1
|
Yoshida H, Abe Y, Igeta K, Higuchi A, Kobashi J, Tomioka Y, Oka S. Transversely graded polarization volume gratings fabricated by freeform holographic photoalignment. OPTICS LETTERS 2024; 49:121-124. [PMID: 38134167 DOI: 10.1364/ol.506271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Polarization volume gratings (PVGs) based on chiral nematic liquid crystals offer a great potential as polarization-dependent holographic optical elements, but it is not easy to fabricate PVGs with varying pattern periods in the transverse plane. Here, we fabricate a PVG with an in-plane gradient of the pattern period by performing two-beam interference photoalignment on a flexible polyimide substrate. The pattern period varies depending on the local interference angle, which is controlled by the bent shape of the flexible substrate. We demonstrate fabrication of a PVG with a linearly graded sub-micrometer period, showing the potential of the proposed method to fabricate designer PVGs.
Collapse
|
2
|
Abstract
Photoalignment of liquid crystals by using azo dye molecules is a commonly proposed alternative to traditional rubbing alignment methods. Photoalignment mechanism can be well described in terms of rotational diffusion of azo dye molecules exposed by ultraviolet polarized light. A specific feature of the irradiated light is the intensity dependent change of azimuthal anchoring of liquid crystals. While there are various mechanisms of azo dye photoalignment, photo-reorientation occurs when dye molecules orient themselves perpendicular to the polarization of incident light. In this review, we describe both recent achievements in applications of photoaligned liquid crystal cells and its simulation. A variety of display and photonic devices with azo dye aligned nematic and ferroelectric liquid crystals are presented: q-plates, optically rewritable flexible e-paper (monochromatic and color), and Dammann gratings. Some theoretical aspects of the alignment process and display simulation are also considered.
Collapse
|
3
|
Cai X, Zhou Z, Tao TH. Photoinduced Tunable and Reconfigurable Electronic and Photonic Devices Using a Silk-Based Diffractive Optics Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000475. [PMID: 32714758 PMCID: PMC7375236 DOI: 10.1002/advs.202000475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Indexed: 05/08/2023]
Abstract
A remarkable feature of modern electronic and photonic devices is the ability to maintain their geometric and physical properties in various circumstances for practical applications. However, there is an increasing demand for reconfigurable devices and systems that can be triggered or switched by external stimuli to change geometric, physical, and/or biochemical properties to meet specific requirements such as compact, lightweight, energy-efficient, and tunable features. Here, a set of phototunable and photoreconfigurable electronic and photonic devices composed of reconfigurable arithmetic circuits and programmable coding metamaterials at terahertz frequencies, empowered by a diffractive optics platform using naturally extracted silk proteins, is reported. These protein-based diffract optics are precisely manufactured into special microstructures for phase modulation of incident light and can be programmed to degrade at controlled rates. This allows spatial and temporal transformation of the incident light into desired intensity profiles to modulate the electrical properties of multiple photosensitive elements/components within the device simultaneously or discretely. Thus, the optoelectronic functionality of fabricated devices can be tailored to specific applications. Therefore, the approach makes it possible to efficiently fabricate tunable, reconfigurable transient electronic and photonic devices and systems.
Collapse
Affiliation(s)
- Xiaoqing Cai
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhitao Zhou
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Tiger H. Tao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute of Brain‐Intelligence TechnologyZhangjiang LaboratoryShanghai200031China
- Shanghai Research Center for Brain Science and Brain‐Inspired IntelligenceShanghai200031China
| |
Collapse
|
4
|
Chen P, Wei BY, Hu W, Lu YQ. Liquid-Crystal-Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903665. [PMID: 31566267 DOI: 10.1002/adma.201903665] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Planar optical elements that can manipulate the multidimensional physical parameters of light efficiently and compactly are highly sought after in modern optics and nanophotonics. In recent years, the geometric phase, induced by the photonic spin-orbit interaction, has attracted extensive attention for planar optics due to its powerful beam shaping capability. The geometric phase can usually be generated via inhomogeneous anisotropic materials, among which liquid crystals (LCs) have been a focus. Their pronounced optical properties and controllable and stimuli-responsive self-assembly behavior introduce new possibilities for LCs beyond traditional panel displays. Recent advances in LC-mediated geometric phase planar optics are briefly reviewed. First, several recently developed photopatterning techniques are presented, enabling the accurate fabrication of complicated LC microstructures. Subsequently, nematic LC-based transmissive planar optical elements and chiral LC-based broadband reflective elements are reviewed systematically. Versatile functionalities are revealed, from conventional beam steering and focusing, to advanced structuring. Combining the geometric phase with structured LC materials offers a satisfactory platform for planar optics with desired functionalities and drastically extends exceptional applications of ordered soft matter. Some prospects on this rapidly advancing field are also provided.
Collapse
Affiliation(s)
- Peng Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Bing-Yan Wei
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Hu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Institute for Smart Liquid Crystals, JITRI, Changshu, 215500, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
5
|
Zhang R, Chu G, Vasilyev G, Martin P, Camposeo A, Persano L, Pisignano D, Zussman E. Hybrid Nanocomposites for 3D Optics: Using Interpolymer Complexes with Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19324-19330. [PMID: 31058491 PMCID: PMC6543505 DOI: 10.1021/acsami.9b01699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/06/2019] [Indexed: 05/03/2023]
Abstract
Manipulation of optical paths by three-dimensional (3D) integrated optics with customized stacked building blocks has gained considerable attention. Herein, we present functional thin films with assembly ability for 3D integrated optics based on nanocomposites made of cellulose nanocrystals (CNCs) embedded in hydrogen-bonded (H-bonded) interpolymer complexes (IPCs). We selected H-bonded IPC poly(ethylene oxide) and neutralized poly(acrylic acid) to render films assembly ability without undesired interplay with charge distribution in CNCs. The CNCs can form a stable chiral nematic liquid crystalline phase with long-range orientational order and helical organization. The resulting nanocomposites are characterized with a high elastic modulus of 8.8 GPa and an adhesion strength of 1.35 MPa through reversible intermolecular interactions at the contact interface upon exposure to acidic vapor. Instead, simply stacked into 3D optics, these functional thin films serve as a facile material for providing a conceptually simple approach to assemble 3D integrated optics with different liquid crystalline orderings to manipulate the light polarization state.
Collapse
Affiliation(s)
- Ruiyan Zhang
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Guang Chu
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Vasilyev
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Patrick Martin
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Andrea Camposeo
- NEST,
Instituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Luana Persano
- NEST,
Instituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Dario Pisignano
- Dipartimento
di Fisica “Enrico Fermi”, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- NEST,
Istituto Nanoscience-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Eyal Zussman
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
6
|
Lou S, Zhou Y, Yuan Y, Lin T, Fan F, Wang X, Huang H, Wen S. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device. OPTICS EXPRESS 2019; 27:8596-8604. [PMID: 31052674 DOI: 10.1364/oe.27.008596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
We propose theoretically and verify experimentally a method of using electrically tunable liquid crystal q-plate and wave plate for generating arbitrary vector vortex beams on a hybrid-order Poincaré sphere (HyOPS). The generated vector vortex beam is verified and shows decent agreement with the prediction. This method brings many advantages, such as high conversion efficiency, good electrical controllability, and integration. This system can provide fundamental optical system support for various structured beam applications.
Collapse
|
7
|
Yin K, Lee YH, He Z, Wu ST. Stretchable, flexible, rollable, and adherable polarization volume grating film. OPTICS EXPRESS 2019; 27:5814-5823. [PMID: 30876176 DOI: 10.1364/oe.27.005814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Volume Bragg gratings (VBGs) have many applications, including filters, wavelength multiplexing devices, and see-through displays. As a kind of VBGs, polarization volume gratings (PVGs) based on liquid crystal polymer have the advantages of nearly 100% efficiency, large deflection angle, and high polarization selectivity. However, previous reports regarding PVGs did not address high efficiency, tunable periodicity, and flexibility. Here, we report a stretchable, flexible, and rollable PVG film with high diffraction efficiency. The control of PVG by mechanical stretching is investigated, while the Bragg reflection band shift is evaluated quantitatively. Moreover, we quantified the deflection angle change's behavior, which has promising potential for laser beam steering applications. The mechanical robustness under stretch-release cycles is also scrutinized.
Collapse
|
8
|
Lin T, Zhou Y, Yuan Y, Fu W, Yao L, Huang H, Fan F, Wen S. Transflective spin-orbital angular momentum conversion device by three-dimensional multilayer liquid crystalline materials. OPTICS EXPRESS 2018; 26:29244-29252. [PMID: 30470090 DOI: 10.1364/oe.26.029244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/07/2018] [Indexed: 06/09/2023]
Abstract
In this paper, a liquid crystal device for generating transflected optical vortices with high efficiency based on Pancharatnam-Berry phase is devised and demonstrated experimentally. In the experiment, both photo-alignment material and polymer-alignment material are used for assembling three-dimensional distributed liquid crystal polymer and cholesteric liquid crystal. Through the interaction between the incident light and the device, both transmitted light and reflected light get spin-orbital angular momentum conversion. Moreover, the amount of transmitted and reflected beams can be modulated by the input polarization. In our proposal, the device is dual functional, low-cost and simple in manufacturing process.
Collapse
|
9
|
Duan W, Chen P, Ge SJ, Wei BY, Hu W, Lu YQ. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals. OPTICS EXPRESS 2017; 25:14059-14064. [PMID: 28788991 DOI: 10.1364/oe.25.014059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
A liquid crystal forked vortex lens integrated with Pancharatnam-Berry phase is proposed and demonstrated via a dynamic photo-patterning technique. The forked vortex lens can generate two optical vortices with opposite spin and orbital angular momentum, which are spatially separated to two focal points with one optical vortex focused and the other defocused. It exhibits distinctive helicity-dependency and ultra-high diffraction efficiency up to 95%. The topological charges of generated optical vortices are detected via astigmatic transformation. This work supplies an easy fabrication and low power consumption strategy for generating and separating (de-)focused optical vortices simultaneously.
Collapse
|
10
|
Wei D, Guo J, Fang X, Wei D, Ni R, Chen P, Hu X, Zhang Y, Hu W, Lu YQ, Zhu SN, Xiao M. Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal. OPTICS EXPRESS 2017; 25:11556-11563. [PMID: 28788719 DOI: 10.1364/oe.25.011556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We experimentally demonstrate multiple generations of high-order orbital angular momentum (OAM) modes through third-harmonic generation in a 2D nonlinear photonic crystal. Such third-harmonic generation process is achieved by cascading second-harmonic generation and sum-frequency generation using the non-collinear quasi-phase-matching technique. This technique allows multiple OAM modes with different colors to be simultaneously generated. Moreover, the OAM conservation law guarantees that the topological charge is tripled in the cascaded third-harmonic generation process. Our method is effective for obtaining multiple high-order OAM modes for optical imaging, manipulation, and communications.
Collapse
|