1
|
Tyulnev I, Jiménez-Galán Á, Poborska J, Vamos L, Russell PSJ, Tani F, Smirnova O, Ivanov M, Silva REF, Biegert J. Valleytronics in bulk MoS 2 with a topologic optical field. Nature 2024; 628:746-751. [PMID: 38658682 DOI: 10.1038/s41586-024-07156-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/02/2024] [Indexed: 04/26/2024]
Abstract
The valley degree of freedom1-4 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5-7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10-13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.
Collapse
Affiliation(s)
- Igor Tyulnev
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Álvaro Jiménez-Galán
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Max-Born-Institut, Berlin, Germany
| | - Julita Poborska
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Lenard Vamos
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Philip St J Russell
- Max-Planck Institute for Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Francesco Tani
- Max-Planck Institute for Science of Light, Erlangen, Germany
| | - Olga Smirnova
- Max-Born-Institut, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
- Technion - Israel Institute of Technology, Haifa, Israel
| | - Misha Ivanov
- Max-Born-Institut, Berlin, Germany
- Technion - Israel Institute of Technology, Haifa, Israel
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Physics, Imperial College London, London, UK
| | - Rui E F Silva
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jens Biegert
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
2
|
Zhao X, Liu M. Excitation dynamics in molecule resolved by internuclear distance driven by the strong laser field. OPTICS EXPRESS 2024; 32:355-365. [PMID: 38175066 DOI: 10.1364/oe.503839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Rydberg-state excitation of stretched model molecules subjected to near-infrared intense laser fields has been investigated based on a fully quantum model (QM) proposed recently and the numerical solutions of time-dependent Schrödinger equation (TDSE). Given the good agreement between QM and TDSE, it is found that, as the molecules are stretched, the electron tends to be trapped into low-lying Rydberg-states after its ionization from the core, which can be attributed to the shift of the ionization moments corresponding to maximum excitation populations. Moreover, the n-distribution is broadened for molecules with increasing internuclear distance, which results from the change of momentum distribution of emitted electrons. Analysis indicates that both of the above phenomena are closely related to the interference effect of electronic wave packets emitted from different nuclei. Our study provides a more comprehensive understanding of the molecular excitation in intense laser fields, as well as a means of possible applications to related experimental observations.
Collapse
|
3
|
Mayer N, Beaulieu S, Jiménez-Galán Á, Patchkovskii S, Kornilov O, Descamps D, Petit S, Smirnova O, Mairesse Y, Ivanov MY. Role of Spin-Orbit Coupling in High-Order Harmonic Generation Revealed by Supercycle Rydberg Trajectories. PHYSICAL REVIEW LETTERS 2022; 129:173202. [PMID: 36332250 DOI: 10.1103/physrevlett.129.173202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
High-harmonic generation is typically thought of as a sub-laser-cycle process, with the electron's excursion in the continuum lasting a fraction of the optical cycle. However, it was recently suggested that long-lived Rydberg states can play a particularly important role in high harmonic generation by atoms driven by the combination of the counterrotating circularly polarized fundamental light field and its second harmonic. Here we report direct experimental evidence of very long and stable Rydberg trajectories contributing to high-harmonic generation in such fields. We track their dynamics inside the laser pulse using the spin-orbit evolution in the ionic core, utilizing the spin-orbit Larmor clock. We confirm their effect on harmonic emission both via microscopic simulations and by showing how this radiation can lead to a well-collimated macroscopic far-field signal. Our observations contrast sharply with the general view that long-lived Rydberg orbits should generate negligible contribution to the macroscopic far-field high harmonic response of the medium.
Collapse
Affiliation(s)
- N Mayer
- Max-Born-Institute, Max-Born Straße 2A, 12489 Berlin, Germany
| | - S Beaulieu
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR5107, F33405 Talence, France
| | - Á Jiménez-Galán
- Max-Born-Institute, Max-Born Straße 2A, 12489 Berlin, Germany
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, Ottawa, Canada
| | - S Patchkovskii
- Max-Born-Institute, Max-Born Straße 2A, 12489 Berlin, Germany
| | - O Kornilov
- Max-Born-Institute, Max-Born Straße 2A, 12489 Berlin, Germany
| | - D Descamps
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR5107, F33405 Talence, France
| | - S Petit
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR5107, F33405 Talence, France
| | - O Smirnova
- Max-Born-Institute, Max-Born Straße 2A, 12489 Berlin, Germany
| | - Y Mairesse
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR5107, F33405 Talence, France
| | - M Y Ivanov
- Max-Born-Institute, Max-Born Straße 2A, 12489 Berlin, Germany
- Department of Physics, Humboldt University, Newtonstraße 15, D-12489 Berlin, Germany
- Blackett Laboratory, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
4
|
The High-Order Harmonic Generation from Atom Driven by Co-Rotating Laser Pulses Composed of Fundamental Frequency and High Frequency. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
By numerically solving the time-dependent Schrödinger equation (TDSE), the harmonic generation process of atoms irradiated by corotating laser pulses composed of a fundamental-frequency and high-frequency field is systematically studied. Compared with the harmonic generated from atoms irradiated by counter-rotating two-color circularly polarized laser pulses, the harmonic efficiency of atoms irradiated by co-rotating two-color circularly polarized (CRTCCP) laser pulses with the same laser parameters is higher. The harmonics are generated by the multiphoton radiation transition after the bound electrons undergo a multiphoton absorption transition to a higher energy level. In addition, the variation of the harmonic efficiency with the field strength of different frequency components in the driving laser pulse is also studied. The circularly polarized harmonics with higher intensity can be obtained by optimizing the field strength of the driving laser field.
Collapse
|
5
|
Elliptically polarized high-harmonic radiation for production of isolated attosecond pulses. Sci Rep 2021; 11:9570. [PMID: 33953228 PMCID: PMC8099878 DOI: 10.1038/s41598-021-88557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/05/2021] [Indexed: 11/12/2022] Open
Abstract
Circularly polarized attosecond pulses are powerful tool to study chiral light-matter interaction via chiral electron dynamics. However, access to isolated circularly polarized attosecond pulses enabling straightforward interpretation of measurements, still remains a challenge. In this work, we experimentally demonstrate the generation of highly elliptically polarized high-harmonics in a two-color, bi-circular, collinear laser field. The intensity and shape of the combined few-cycle driving radiation is optimized to produce a broadband continuum with enhanced spectral chirality in the range of 15-55 eV supporting the generation of isolated attosecond pulses with duration down to 150 as. We apply spectrally resolved polarimetry to determine the full Stokes vector of different spectral components of the continuum, yielding a homogenous helicity distribution with ellipticity in the range of 0.8-0.95 and a negligible unpolarized content.
Collapse
|
6
|
Barreau L, Veyrinas K, Gruson V, Weber SJ, Auguste T, Hergott JF, Lepetit F, Carré B, Houver JC, Dowek D, Salières P. Evidence of depolarization and ellipticity of high harmonics driven by ultrashort bichromatic circularly polarized fields. Nat Commun 2018; 9:4727. [PMID: 30413700 PMCID: PMC6226473 DOI: 10.1038/s41467-018-07151-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/17/2018] [Indexed: 11/30/2022] Open
Abstract
High harmonics generated by counter-rotating laser fields at the fundamental and second harmonic frequencies have raised important interest as a table-top source of circularly polarized ultrashort extreme-ultraviolet light. However, this emission has not yet been fully characterized: in particular it was assumed to be fully polarized, leading to an uncertainty on the effective harmonic ellipticity. Here we show, through simulations, that ultrashort driving fields and ultrafast medium ionization lead to a breaking of the dynamical symmetry of the interaction, and consequently to deviations from perfectly circular and fully polarized harmonics, already at the single-atom level. We perform the complete experimental characterization of the polarization state of high harmonics generated along that scheme, giving direct access to the ellipticity absolute value and sign, as well as the degree of polarization of individual harmonic orders. This study allows defining optimal generation conditions of fully circularly polarized harmonics for advanced studies of ultrafast dichroisms.
Collapse
Affiliation(s)
- Lou Barreau
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Kévin Veyrinas
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405, Orsay, France
| | - Vincent Gruson
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Sébastien J Weber
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
- CEMES, UPR 8011, CNRS-Université de Toulouse, 29, rue Jeanne Marvig, BP 94347, F-31055, Toulouse, France
| | - Thierry Auguste
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Jean-François Hergott
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Fabien Lepetit
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Bertrand Carré
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Jean-Christophe Houver
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405, Orsay, France
| | - Danielle Dowek
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405, Orsay, France.
| | - Pascal Salières
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Jia GR, Wang XQ, Du TY, Huang XH, Bian XB. High-order harmonic generation from 2D periodic potentials in circularly and bichromatic circularly polarized laser fields. J Chem Phys 2018; 149:154304. [DOI: 10.1063/1.5051598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guang-Rui Jia
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin-Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao-Yuan Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiao-Huan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xue-Bin Bian
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
8
|
Frolov MV, Manakov NL, Minina AA, Vvedenskii NV, Silaev AA, Ivanov MY, Starace AF. Control of Harmonic Generation by the Time Delay Between Two-Color, Bicircular Few-Cycle Mid-IR Laser Pulses. PHYSICAL REVIEW LETTERS 2018; 120:263203. [PMID: 30004720 DOI: 10.1103/physrevlett.120.263203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 06/08/2023]
Abstract
We study control of high-order harmonic generation (HHG) driven by time-delayed, few-cycle ω and 2ω counterrotating mid-IR pulses. Our numerical and analytical study shows that the time delay between the two-color pulses allows control of the harmonic positions, both those allowed by angular momentum conservation and those seemingly forbidden by it. Moreover, the helicity of any particular harmonic is tunable from left to right circular without changing the driving pulse helicity. The highest HHG yield occurs for a time delay comparable to the fundamental period T=2π/ω.
Collapse
Affiliation(s)
- M V Frolov
- Department of Physics, Voronezh State University, Voronezh 394018, Russia
| | - N L Manakov
- Department of Physics, Voronezh State University, Voronezh 394018, Russia
| | - A A Minina
- Department of Physics, Voronezh State University, Voronezh 394018, Russia
| | - N V Vvedenskii
- Department of Physics, Voronezh State University, Voronezh 394018, Russia
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
- University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - A A Silaev
- Department of Physics, Voronezh State University, Voronezh 394018, Russia
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
- University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - M Yu Ivanov
- Max-Born Institute, Max-Born-Strasse 2A, Berlin D-12489, Germany
- Blackett Laboratory, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Anthony F Starace
- Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| |
Collapse
|
9
|
Zhavoronkov N, Ivanov M. Extended ellipticity control for attosecond pulses by high harmonic generation. OPTICS LETTERS 2017; 42:4720-4723. [PMID: 29140352 DOI: 10.1364/ol.42.004720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Attosecond (1 as=10-18 s) pulses produced through high harmonic generation (HHG) are a basis for studies of electron dynamics during light-matter interaction on an electron's natural time scale. Extensively exploited HHG technology has, however, a few unsolved problems, where producing of circularly polarized or chiral attosecond pulses belongs to them. We have demonstrated experimentally a way to control the ellipticity of attosecond pulse trains produced via HHG in two-color, bi-circular laser fields. We show that the combination of a nonlinear medium position and the intensities of the two-color driving laser fields create an effective helicity-dependent filter. Based on this approach, we report generation of chiral spectra providing potential to produce attosecond pulses with polarization tuned from the rotating, but linear to highly elliptic, with ellipticity as much as ϵ=0.75. This new way to create a chiral-sensitive element offers a simple and practical knob to control polarization for a combined harmonics field in a smooth and predictable manner.
Collapse
|