1
|
Stein J, Ericsson M, Nofal M, Magni L, Aufmkolk S, McMillan RB, Breimann L, Herlihy CP, Lee SD, Willemin A, Wohlmann J, Arguedas-Jimenez L, Yin P, Pombo A, Church GM, Wu CT. Cryosectioning-enhanced super-resolution microscopy for single-protein imaging across cells and tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.05.576943. [PMID: 38370628 PMCID: PMC10871237 DOI: 10.1101/2024.02.05.576943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
DNA-PAINT enables nanoscale imaging with virtually unlimited multiplexing and molecular counting. Here, we address challenges, such as variable imaging performance and target accessibility, that can limit its broader applicability. Specifically, we enhance its capacity for robust single-protein imaging and molecular counting by optimizing the integration of TIRF microscopy with physical sectioning, in particular, Tokuyasu cryosectioning. Our method, tomographic & kinetically enhanced DNA-PAINT (tkPAINT), achieves 3 nm localization precision across diverse samples, enhanced imager binding, and improved cellular integrity. tkPAINT can facilitate molecular counting with DNA-PAINT inside the nucleus, as demonstrated through its quantification of the in situ abundance of RNA Polymerase II in both HeLa cells as well as mouse tissues. Anticipating that tkPAINT could become a versatile tool for the exploration of biomolecular organization and interactions across cells and tissues, we also demonstrate its capacity to support multiplexing, multimodal targeting of proteins and nucleic acids, and 3D imaging.
Collapse
Affiliation(s)
- Johannes Stein
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maria Ericsson
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Michel Nofal
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Lorenzo Magni
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Sarah Aufmkolk
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ryan B. McMillan
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Laura Breimann
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - S. Dean Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Norway
| | - Laura Arguedas-Jimenez
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Peng Yin
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - George M. Church
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chao-ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Hu Y, Dai X, Zhang H, Dai Q, Niu B, Jing G, Li Y, Fan G. Observing multi-frequency structured illumination patterns based on an evanescent field in a millimeter-scale polymer slide. OPTICS LETTERS 2024; 49:4903-4906. [PMID: 39207993 DOI: 10.1364/ol.532009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Millimeter-scale slide optical waveguides (OWGs) show the potential to break the barrier of easy-to-use and versatility for total internal reflection (TIR) fluorescence technology. In this paper, multi-frequency structured illumination (SI) patterns resulting from the evanescent field (EF) on the surface of a millimeter-scale polymer slide OWG are observed by measuring the fluorescence intensity distribution of fluorescent dyes deposited on the top of the OWG. The frequency, intensity, and stability of the SI patterns show a strong dependence on the coupling angle of the incident light (changing with the incident position). The distribution of multi-frequency SI patterns in the frequency space is demonstrated for different numerical aperture (NA) imaging systems (NA = 0.3, 0.6, and 0.8), indicating the potential for enhanced resolution for low NA systems with a simple and cheap polymer slide.
Collapse
|
3
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Niederauer C, Nguyen C, Wang-Henderson M, Stein J, Strauss S, Cumberworth A, Stehr F, Jungmann R, Schwille P, Ganzinger KA. Dual-color DNA-PAINT single-particle tracking enables extended studies of membrane protein interactions. Nat Commun 2023; 14:4345. [PMID: 37468504 DOI: 10.1038/s41467-023-40065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
DNA-PAINT based single-particle tracking (DNA-PAINT-SPT) has recently significantly enhanced observation times in in vitro SPT experiments by overcoming the constraints of fluorophore photobleaching. However, with the reported implementation, only a single target can be imaged and the technique cannot be applied straight to live cell imaging. Here we report on leveraging this technique from a proof-of-principle implementation to a useful tool for the SPT community by introducing simultaneous live cell dual-color DNA-PAINT-SPT for quantifying protein dimerization and tracking proteins in living cell membranes, demonstrating its improved performance over single-dye SPT.
Collapse
Affiliation(s)
| | - Chikim Nguyen
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands
| | | | - Johannes Stein
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Florian Stehr
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
5
|
Abstract
Total internal reflection fluorescence (TIRF) microscopy (TIRFM) is an elegant optical technique that provides for the excitation of fluorophores in an extremely thin axial region ("optical section"). The method is based on the principle that when excitation light is completely internally reflected in a transparent solid (e.g., coverglass) at its interface with liquid, an electromagnetic field, called the evanescent wave, is generated in the liquid at the solid-liquid interface and is the same frequency as the excitation light. Since the intensity of the evanescent wave exponentially decays with distance from the surface of the solid, only fluorescent molecules within a few hundred nanometers of the solid are efficiently excited. This overview will review the history, optical theory, and hardware configurations used in TIRFM. In addition, it will provide experimental details and methodological considerations for studying receptors at the plasma membrane in neurons. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Microwave Soil Heating with Evanescent Fields from Slow-Wave Comb and Ceramic Applicators. ENERGIES 2022. [DOI: 10.3390/en15031068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microwave soil heating deactivates weed seeds; however, in many modern agricultural settings, weed seeds are mostly found in the top 1–2 cm of the soil profile. Until recently, microwave soil heating has been achieved using various antennas, which project the microwave energy deeply into the soil. The aim of this research was to develop new microwave applicators that provide shallow heating (less than 50 mm). This paper presents two applicator designs, one based on a comb slow-wave structure and the other on the frustrated total internal reflection (FTIR) principle, which utilise evanescent microwave fields to restrict the depth of microwave heating. The background theory to their performance is presented, followed by experimental evidence of their constrained heating performance under different soil moisture scenarios. Experimental measurements of the heating performance of these applicators, in soils of varying moisture content, demonstrate that the evanescent microwave fields restrict the depth of heating, so that most of the energy is manifested in the top 50 mm of soil. The evanescent field decay rate for the FTIR applicator changes from 44.0 ± 0.7 m−1 to 30 ± 1.2 m−1 as the soil moisture changes from 32% to 174% (dry weight basis). This is higher than the evanescent field decay rate for the comb slow-wave applicator (17.6 ± 0.7 m−1 to 19.9 ± 1.5 m−1). The FTIR applicator has a wider and shallower heating pattern than the comb slow-wave applicator. Because of the double heating lobes of the FTIR applicator, the effective half temperature heating width is approximately 150 mm. This is wider than the half temperature heating width of the comb slow-wave applicator (95 mm).
Collapse
|
7
|
El Arawi D, Vézy C, Déturche R, Lehmann M, Kessler H, Dontenwill M, Jaffiol R. Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy. BIOPHYSICAL REPORTS 2021; 1:100021. [PMID: 36425460 PMCID: PMC9680782 DOI: 10.1016/j.bpr.2021.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.
Collapse
Affiliation(s)
- Dalia El Arawi
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Cyrille Vézy
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Régis Déturche
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Maxime Lehmann
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Horst Kessler
- Department Chemie, Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| |
Collapse
|
8
|
Eto H, Franquelim HG, Heymann M, Schwille P. Membrane-coated 3D architectures for bottom-up synthetic biology. SOFT MATTER 2021; 17:5456-5466. [PMID: 34106121 DOI: 10.1039/d1sm00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.
Collapse
Affiliation(s)
- Hiromune Eto
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Henri G Franquelim
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Michael Heymann
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany. and Department of Intelligent Biointegrative Systems, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Petra Schwille
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
9
|
Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules. Nat Commun 2021; 12:517. [PMID: 33483489 PMCID: PMC7822951 DOI: 10.1038/s41467-020-20863-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023] Open
Abstract
Single-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule’s image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision. Achieving high axial resolution is challenging in single-molecule localization microscopy. Here, the authors present a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope without hardware modification, and show nearly isotropic nanometric resolution.
Collapse
|
10
|
Petrov PN, Moerner WE. Addressing systematic errors in axial distance measurements in single-emitter localization microscopy. OPTICS EXPRESS 2020; 28:18616-18632. [PMID: 32672159 PMCID: PMC7340385 DOI: 10.1364/oe.391496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Nanoscale localization of point emitters is critical to several methods in optical fluorescence microscopy, including single-molecule super-resolution imaging and tracking. While the precision of the localization procedure has been the topic of extensive study, localization accuracy has been less emphasized, in part due to the challenge of producing an experimental sample containing unperturbed point emitters at known three-dimensional positions in a relevant geometry. We report a new experimental system which reproduces a widely-adopted geometry in high-numerical aperture localization microscopy, in which molecules are situated in an aqueous medium above a glass coverslip imaged with an oil-immersion objective. We demonstrate a calibration procedure that enables measurement of the depth-dependent point spread function (PSF) for open aperture imaging as well as imaging with engineered PSFs with index mismatch. We reveal the complicated, depth-varying behavior of the focal plane position in this system and discuss the axial localization biases incurred by common approximations of this behavior. We compare our results to theoretical calculations.
Collapse
Affiliation(s)
- Petar N. Petrov
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| | - W. E. Moerner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Oheim M, Salomon A, Brunstein M. Supercritical Angle Fluorescence Microscopy and Spectroscopy. Biophys J 2020; 118:2339-2348. [PMID: 32348720 PMCID: PMC7231923 DOI: 10.1016/j.bpj.2020.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023] Open
Abstract
Fluorescence detection, either involving propagating or near-field emission, is widely being used in spectroscopy, sensing, and microscopy. Total internal reflection fluorescence (TIRF) confines fluorescence excitation by an evanescent (near) field, and it is a popular contrast generator for surface-selective fluorescence assays. Its emission equivalent, supercritical angle fluorescence (SAF), is comparably less established, although it achieves a similar optical sectioning as TIRF does. SAF emerges when a fluorescing molecule is located very close to an interface and its near-field emission couples to the higher refractive index medium (n2 >n1) and becomes propagative. Then, most fluorescence is detectable on the side of the higher-index substrate, and a large fraction of this fluorescence is emitted into angles forbidden by Snell's law. SAF, as well as the undercritical angle fluorescence (UAF; far-field emission) components, can be collected with microscope objectives having a high-enough detection aperture (numerical aperture >n2) and be separated in the back focal plane by Fourier filtering. The back focal plane image encodes information about the fluorophore radiation pattern, and it can be analyzed to yield precise information about the refractive index in which the emitters are embedded, their nanometric distance from the interface, and their orientation. A SAF microscope can retrieve this near-field information through wide-field optics in a spatially resolved manner, and this functionality can be added to an existing inverted microscope. Here, we describe the potential underpinning of SAF microscopy and spectroscopy, particularly in comparison with TIRF. We review the challenges and opportunities that SAF presents from a biophysical perspective, and we discuss areas in which we see potential.
Collapse
Affiliation(s)
- Martin Oheim
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, Paris, France.
| | - Adi Salomon
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, Paris, France; Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Maia Brunstein
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, Paris, France; Chaire d'Excellence Junior, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Oheim M, Salomon A, Weissman A, Brunstein M, Becherer U. Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy. Biophys J 2019; 117:795-809. [PMID: 31439287 DOI: 10.1016/j.bpj.2019.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
Roughly half of a cell's proteins are located at or near the plasma membrane. In this restricted space, the cell senses its environment, signals to its neighbors, and exchanges cargo through exo- and endocytotic mechanisms. Ligands bind to receptors, ions flow across channel pores, and transmitters and metabolites are transported against concentration gradients. Receptors, ion channels, pumps, and transporters are the molecular substrates of these biological processes, and they constitute important targets for drug discovery. Total internal reflection fluorescence (TIRF) microscopy suppresses the background from the cell's deeper layers and provides contrast for selectively imaging dynamic processes near the basal membrane of live cells. The optical sectioning of TIRF is based on the excitation confinement of the evanescent wave generated at the glass/cell interface. How deep the excitation light actually penetrates the sample is difficult to know, making the quantitative interpretation of TIRF data problematic. Nevertheless, many applications like superresolution microscopy, colocalization, Förster resonance energy transfer, near-membrane fluorescence recovery after photobleaching, uncaging or photoactivation/switching as well as single-particle tracking require the quantitative interpretation of evanescent-wave-excited images. Here, we review existing techniques for characterizing evanescent fields, and we provide a roadmap for comparing TIRF data across images, experiments, and laboratories.
Collapse
Affiliation(s)
- Martin Oheim
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France.
| | - Adi Salomon
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Adam Weissman
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Maia Brunstein
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France; Chaire d'Excellence Junior, Université Sorbonne Paris Cité, Paris, France
| | - Ute Becherer
- Saarland University, Department of Physiology, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
13
|
Blumhardt P, Stein J, Mücksch J, Stehr F, Bauer J, Jungmann R, Schwille P. Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy. Molecules 2018; 23:molecules23123165. [PMID: 30513691 PMCID: PMC6321339 DOI: 10.3390/molecules23123165] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
The limited photon budget of fluorescent dyes is the main limitation for localization precision in localization-based super-resolution microscopy. Points accumulation for imaging in nanoscale topography (PAINT)-based techniques use the reversible binding of fluorophores and can sample a single binding site multiple times, thus elegantly circumventing the photon budget limitation. With DNA-based PAINT (DNA-PAINT), resolutions down to a few nanometers have been reached on DNA-origami nanostructures. However, for long acquisition times, we find a photo-induced depletion of binding sites in DNA-PAINT microscopy that ultimately limits the quality of the rendered images. Here we systematically investigate the loss of binding sites in DNA-PAINT imaging and support the observations with measurements of DNA hybridization kinetics via surface-integrated fluorescence correlation spectroscopy (SI-FCS). We do not only show that the depletion of binding sites is clearly photo-induced, but also provide evidence that it is mainly caused by dye-induced generation of reactive oxygen species (ROS). We evaluate two possible strategies to reduce the depletion of binding sites: By addition of oxygen scavenging reagents, and by the positioning of the fluorescent dye at a larger distance from the binding site.
Collapse
Affiliation(s)
- Philipp Blumhardt
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Johannes Stein
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Jonas Mücksch
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Florian Stehr
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Julian Bauer
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Ralf Jungmann
- Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|