1
|
Cardenas-Benitez B, Hurtado R, Luo X, Lee AP. Three-dimensional isotropic imaging of live suspension cells enabled by droplet microvortices. Proc Natl Acad Sci U S A 2024; 121:e2408567121. [PMID: 39436653 PMCID: PMC11536124 DOI: 10.1073/pnas.2408567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Fast, nondestructive three-dimensional (3D) imaging of live suspension cells remains challenging without substrate treatment or fixation, precluding scalable single-cell morphometry with minimal alterations. While optical sectioning techniques achieve 3D live cell imaging, lateral versus depth resolution differences further complicate analysis. We present a scalable microfluidic method capable of 3D fluorescent isotropic imaging of live, nonadherent cells suspended inside picoliter droplets with high-speed single-cell volumetric readout (800 to 1,200 slices in 5 to 8 s) and near-diffraction limit resolution (~216 nm). The platform features a droplet trap array that leverages flow-induced droplet interfacial shear to generate intradroplet microvortices, which rotate single cells on their axis to enable optical projection tomography (OPT)-based imaging. This allows gentle (~1 mPa shear stress) observation of cells encapsulated inside nontoxic isotonic buffer droplets, facilitating scalable OPT acquisition by simultaneous spinning of hundreds of cells. We demonstrate 3D imaging of live myeloid and lymphoid cells in suspension, including K562 cells, as well as naive and activated T cells-small cells prone to movement in their suspended phenotype. Our fully suspended, orientation-independent cell morphometry, driven by isotropic imaging and spherical harmonic analysis, enabled the study of primary T cells across various immunological activation states. This approach unveiled six distinct nuclear content distributions, contrasting with conventional 2D images that typically portray spheroid and bean-like nuclear shapes associated with lymphocytes. Our arrayed-droplet OPT technology is capable of isotropic, single live-cell 3D imaging, with the potential to perform large-scale morphometry of immune cell effector function states while providing compatibility with microfluidic droplet operations.
Collapse
Affiliation(s)
- Braulio Cardenas-Benitez
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Richard Hurtado
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Xuhao Luo
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA92697
| |
Collapse
|
2
|
Vizsnyiczai G, Búzás A, Lakshmanrao Aekbote B, Fekete T, Grexa I, Ormos P, Kelemen L. Multiview microscopy of single cells through microstructure-based indirect optical manipulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:945-962. [PMID: 32133231 PMCID: PMC7041459 DOI: 10.1364/boe.379233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells' position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms.
Collapse
Affiliation(s)
- Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - András Búzás
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Badri Lakshmanrao Aekbote
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- School of Engineering, James Watt South Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - István Grexa
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Interdisciplinary Medicine, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Pál Ormos
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|