1
|
Qin M, Yu S, Yang Z, Zhang Z. Tailoring the pulse characteristics of LiB 3O 5-based femtosecond optical parametric oscillators by temperature tuning. OPTICS LETTERS 2024; 49:7166-7169. [PMID: 39671668 DOI: 10.1364/ol.543097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
We show that the phase mismatch in LiB3O5 (LBO) crystals is approximately proportional to the temperature deviation from the phase-matching temperature of crystals. Moreover, a fixed temperature deviation would result in approximately the same amount of phase mismatch over a large range of wavelengths. Based on this, we demonstrate that the pulse characteristics of LBO-based femtosecond optical parametric oscillators (OPOs) can be tailored by simply tuning the crystal temperature. Experimentally, at a temperature deviation of 10°C, nearly transform-limited optical pulses were obtained over a tuning range of 780-910 nm, and at a temperature deviation of -9°C, linearly chirped pulses with broadened spectra were obtained, which were de-chirped to be nearly transform-limited ones outside the cavity. The capability of generating femtosecond pulses with different pulse characteristics and at various wavelengths would benefit many applications, including spectroscopy and Raman microscopy.
Collapse
|
2
|
Pilger C, Pospíšil J, Müller M, Ruoff M, Schütte M, Spiecker H, Huser T. Super-resolution fluorescence microscopy by line-scanning with an unmodified two-photon microscope. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200300. [PMID: 33896201 PMCID: PMC8072199 DOI: 10.1098/rsta.2020.0300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 05/19/2023]
Abstract
Fluorescence-based microscopy as one of the standard tools in biomedical research benefits more and more from super-resolution methods, which offer enhanced spatial resolution allowing insights into new biological processes. A typical drawback of using these methods is the need for new, complex optical set-ups. This becomes even more significant when using two-photon fluorescence excitation, which offers deep tissue imaging and excellent z-sectioning. We show that the generation of striped-illumination patterns in two-photon laser scanning microscopy can readily be exploited for achieving optical super-resolution and contrast enhancement using open-source image reconstruction software. The special appeal of this approach is that even in the case of a commercial two-photon laser scanning microscope no optomechanical modifications are required to achieve this modality. Modifying the scanning software with a custom-written macro to address the scanning mirrors in combination with rapid intensity switching by an electro-optic modulator is sufficient to accomplish the acquisition of two-photon striped-illumination patterns on an sCMOS camera. We demonstrate and analyse the resulting resolution improvement by applying different recently published image resolution evaluation procedures to the reconstructed filtered widefield and super-resolved images. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
Collapse
Affiliation(s)
- Christian Pilger
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Jakub Pospíšil
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
- Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic
| | - Marcel Müller
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Martin Ruoff
- LaVision BioTec GmbH, Astastraße 14, 33617 Bielefeld, Germany
| | - Martin Schütte
- LaVision BioTec GmbH, Astastraße 14, 33617 Bielefeld, Germany
| | | | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
3
|
Kong C, Bobe S, Pilger C, Lachetta M, Øie CI, Kirschnick N, Mönkemöller V, Hübner W, Förster C, Schüttpelz M, Kiefer F, Huser T, Schulte Am Esch J. Multiscale and Multimodal Optical Imaging of the Ultrastructure of Human Liver Biopsies. Front Physiol 2021; 12:637136. [PMID: 33679449 PMCID: PMC7925637 DOI: 10.3389/fphys.2021.637136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022] Open
Abstract
The liver as the largest organ in the human body is composed of a complex macroscopic and microscopic architecture that supports its indispensable function to maintain physiological homeostasis. Optical imaging of the human liver is particularly challenging because of the need to cover length scales across 7 orders of magnitude (from the centimeter scale to the nanometer scale) in order to fully assess the ultrastructure of the entire organ down to the subcellular scale and probe its physiological function. This task becomes even more challenging the deeper within the organ one hopes to image, because of the strong absorption and scattering of visible light by the liver. Here, we demonstrate how optical imaging methods utilizing highly specific fluorescent labels, as well as label-free optical methods can seamlessly cover this entire size range in excised, fixed human liver tissue and we exemplify this by reconstructing the biliary tree in three-dimensional space. Imaging of tissue beyond approximately 0.5 mm length requires optical clearing of the human liver. We present the successful use of optical projection tomography and light-sheet fluorescence microscopy to derive information about the liver architecture on the millimeter scale. The intermediate size range is covered using label-free structural and chemically sensitive methods, such as second harmonic generation and coherent anti-Stokes Raman scattering microscopy. Laser-scanning confocal microscopy extends the resolution to the nanoscale, allowing us to ultimately image individual liver sinusoidal endothelial cells and their fenestrations by super-resolution structured illumination microscopy. This allowed us to visualize the human hepatobiliary system in 3D down to the cellular level, which indicates that reticular biliary networks communicate with portal bile ducts via single or a few ductuli. Non-linear optical microscopy enabled us to identify fibrotic regions extending from the portal field to the parenchyma, along with microvesicular steatosis in liver biopsies from an older patient. Lastly, super-resolution microscopy allowed us to visualize and determine the size distribution of fenestrations in human liver sinusoidal endothelial cells for the first time under aqueous conditions. Thus, this proof-of-concept study allows us to demonstrate, how, in combination, these techniques open up a new chapter in liver biopsy analysis.
Collapse
Affiliation(s)
- Cihang Kong
- Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Stefanie Bobe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | | | - Mario Lachetta
- Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Cristina Ionica Øie
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Nils Kirschnick
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | | | - Wolfgang Hübner
- Department of Physics, Bielefeld University, Bielefeld, Germany.,Forschungsverbund BioMedizin Bielefeld (FBMB), Bielefeld, Germany
| | | | - Mark Schüttpelz
- Department of Physics, Bielefeld University, Bielefeld, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Thomas Huser
- Department of Physics, Bielefeld University, Bielefeld, Germany.,Forschungsverbund BioMedizin Bielefeld (FBMB), Bielefeld, Germany
| | - Jan Schulte Am Esch
- Forschungsverbund BioMedizin Bielefeld (FBMB), Bielefeld, Germany.,Department of General and Visceral Surgery, Evangelisches Klinikum Bethel gGmbH, University Hospital OWL of the University of Bielefeld, Bielefeld, Germany
| |
Collapse
|