1
|
Takaishi M, Komino T, Kameda A, Togawa K, Yokomatsu T, Maenaka K, Tajima H. Suppression of the plasmon-quenching effect on light amplification in 20-μm-diameter plasmonic whispering gallery mode resonators fabricated from bowl-shaped organic/metal thin films. Phys Chem Chem Phys 2024; 26:10796-10803. [PMID: 38516939 DOI: 10.1039/d4cp00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Bowl-shaped plasmonic whispering gallery mode (WGM) resonators were fabricated from a 10-nm-thick metal (Al, Ag, or Au) plasmonic layer that was covered with a 100-nm-thick 4,4'-bis(N-carbazolyl)-1,1'-biphenyl spacer layer and a 250-nm-thick 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene light-emitting layer; the layer structure was grown on a 20-μm-diameter silica microsphere. When compared with a reference structure without the plasmonic layer, the resonators, which included either Al or Ag, showed almost the same threshold excitation intensities for generation of amplified spontaneous emission (ASE). This result indicates that the ease of light amplification in the plasmonic resonators was comparable to that in the reference structure. Excitons that exist in the vicinity of metal thin films are generally easy to quench because propagating surface plasmon polaritons (SPPs) absorb the exciton energy. Therefore, the observed comparability demonstrates that the plasmonic WGM resonators overcome this quenching effect on ASE via localization of the SPPs in the vicinity of the excitons.
Collapse
Affiliation(s)
- Minami Takaishi
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| | - Takeshi Komino
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| | - Akihiro Kameda
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| | - Kyosuke Togawa
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| | - Tokuji Yokomatsu
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Kazusuke Maenaka
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Hiroyuki Tajima
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| |
Collapse
|
2
|
Masson JF, Wallace GQ, Asselin J, Ten A, Hojjat Jodaylami M, Faulds K, Graham D, Biggins JS, Ringe E. Optoplasmonic Effects in Highly Curved Surfaces for Catalysis, Photothermal Heating, and SERS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46181-46194. [PMID: 37733583 PMCID: PMC10561152 DOI: 10.1021/acsami.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Surface curvature can be used to focus light and alter optical processes. Here, we show that curved surfaces (spheres, cylinders, and cones) with a radius of around 5 μm lead to maximal optoplasmonic properties including surface-enhanced Raman scattering (SERS), photocatalysis, and photothermal processes. Glass microspheres, microfibers, pulled fibers, and control flat substrates were functionalized with well-dispersed and dense arrays of 45 nm Au NP using polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) and chemically modified with 4-mercaptobenzoic acid (4-MBA, SERS reporter), 4-nitrobenzenethiol (4-NBT, reactive to plasmonic catalysis), or 4-fluorophenyl isocyanide (FPIC, photothermal reporter). The various curved substrates enhanced the plasmonic properties by focusing the light in a photonic nanojet and providing a directional antenna to increase the collection efficacy of SERS photons. The optoplasmonic effects led to an increase of up to 1 order of magnitude of the SERS response, up to 5 times the photocatalytic conversion of 4-NBT to 4,4'-dimercaptoazobenzene when the diameter of the curved surfaces was about 5 μm and a small increase in photothermal effects. Taken together, the results provide evidence that curvature enhances plasmonic properties and that its effect is maximal for spherical objects around a few micrometers in diameter, in agreement with a theoretical framework based on geometrical optics. These enhanced plasmonic effects and the stationary-phase-like plasmonic substrates pave the way to the next generation of sensors, plasmonic photocatalysts, and photothermal devices.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Gregory Q. Wallace
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Jérémie Asselin
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Andrey Ten
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| | - Maryam Hojjat Jodaylami
- Département
de chimie, Quebec center for advanced materials, Regroupement québécois
sur les matériaux de pointe, and Centre interdisciplinaire
de recherche sur le cerveau et l’apprentissage, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC Canada, H3C 3J7
| | - Karen Faulds
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Centre
for Molecular Nanometrology, Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - John S. Biggins
- Engineering
Department, University of Cambridge, Trumpington Street, Cambridge, U.K. CB2 1PZ
| | - Emilie Ringe
- Department
of Material Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, U.K. CB3 0FS
- Department
of Earth Science, University of Cambridge, Downing Street, Cambridge, U.K. CB2 3EQ
| |
Collapse
|
3
|
Dien ND, Thu Ha PT, Vu XH, Trang TT, Thanh Giang TD, Dung NT. Developing efficient CuO nanoplate/ZnO nanoparticle hybrid photocatalysts for methylene blue degradation under visible light. RSC Adv 2023; 13:24505-24518. [PMID: 37593668 PMCID: PMC10427893 DOI: 10.1039/d3ra03791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
CuO/ZnO nanocomposites with different components can overcome the drawbacks of previously used photocatalysts owing to their promotion in charge separation and transportation, light absorption, and the photo-oxidation of dyes. In this study, CuO nanoplates were synthesized by the hydrothermal method, while ZnO nanoparticles were fabricated by the precipitation method. A series of CuO/ZnO nanocomposites with different ZnO-to-CuO weight ratios, namely, 2 : 8, 4 : 6, 5 : 5, 6 : 4, and 8 : 2 were obtained via a mixing process. X-ray diffraction patterns confirmed the presence of hexagonal wurtzite ZnO and monoclinic CuO in the synthesized CuO/ZnO nanocomposites. Scanning electron microscopy showed the dispersion of ZnO nanoparticles on the surface of CuO nanoplates. Ultraviolet-visible absorption spectra exhibited a slight red-shift in the absorption edge of binary oxides relative to pure ZnO or CuO. All samples were employed for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The composite samples exhibited enhanced photocatalytic performance compared with pristine CuO or ZnO. This study aimed to examine the effect of the ZnO-to-CuO weight ratio on their photocatalytic performance. The results indicated that among all the synthesized nanocomposites and pristine oxides, the nanocomposite with ZnO and CuO in a proportion of 4 : 6 shows the highest photodegradation activity for the removal of MB with 93% MB photodegraded within 60 min at an initial MB concentration of 5 ppm. The photocatalytic kinetic data were described well by the pseudo-first-order model with a high correlation coefficient of 0.95. The photocatalytic mechanism of the mixed metal oxide was proposed and discussed in detail. The photodegradation characteristic of CuO/ZnO nanostructures is valuable for methylene blue degradation from aqueous solutions as well as environmental purification in various fields.
Collapse
Affiliation(s)
- Nguyen Dac Dien
- Faculty of Occupational Safety and Health, Vietnam Trade Union University 169 Tay Son Street, Dong Da district Ha Noi city 100000 Vietnam
| | - Pham Thi Thu Ha
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Xuan Hoa Vu
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Trinh Duc Thanh Giang
- Dao Duy Tu High School Chu Van An road, Hoang Van Thu ward Thai Nguyen city 24000 Vietnam
| | - Nguyen Thi Dung
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| |
Collapse
|
4
|
Du B, Zhang M, Ye J, Wang D, Han J, Zhang T. Novel Au Nanoparticle-Modified ZnO Nanorod Arrays for Enhanced Photoluminescence-Based Optical Sensing of Oxygen. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23062886. [PMID: 36991596 PMCID: PMC10051414 DOI: 10.3390/s23062886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 05/31/2023]
Abstract
Novel optical gas-sensing materials for Au nanoparticle (NP)-modified ZnO nanorod (NR) arrays were fabricated using hydrothermal synthesis and magnetron sputtering on Si substrates. The optical performance of ZnO NR can be strongly modulated by the annealing temperature and Au sputtering time. With exposure to trace quantities of oxygen, the ultraviolet (UV) emission of the photoluminescence (PL) spectra of Au/ZnO samples at ~390 nm showed a large variation in intensity. Based on this mechanism, ZnO NR based oxygen gas sensing via PL spectra variation demonstrated a wide linear detection range of 10-100%, a high response value, and a 1% oxygen content sensitivity detection limit at 225 °C. This outstanding optical oxygen-sensing performance can be attributed to the large surface area to volume ratio, high crystal quality, and high UV emission efficiency of the Au NP-modified ZnO NR arrays. Density functional theory (DFT) simulation results confirmed that after the Au NPs modified the surface of the ZnO NR, the charge at the interface changed, and the structure of Au/ZnO had the lowest adsorption energy for oxygen molecules. These results suggest that Au NP-modified ZnO NR are promising for high-performance optical gas-sensing applications.
Collapse
Affiliation(s)
- Baosheng Du
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Meng Zhang
- Institute of War Studies, Academy of Military Sciences, Beijing 100091, China
| | - Jifei Ye
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Diankai Wang
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Jianhui Han
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Tengfei Zhang
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| |
Collapse
|
5
|
Zhang L, Heng CL, Wang X, Su WY, Finstad TG. Synergistically enhanced ultraviolet emission of Yb doped ZnO films by using a capping of ultrathin Al and SiO 2 microspheres. OPTICS EXPRESS 2022; 30:38167-38177. [PMID: 36258385 DOI: 10.1364/oe.472497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
We studied the enhancement effects of ultraviolet (UV) emission from rare earth ytterbium (Yb) doped ZnO films, by using capping layers of Al and SiO2 micro-spheres. The films were deposited on Si substrates with magnetron sputtering followed by high temperature (∼1000°C) heat treatment, and then capped with a nanoscale ultrathin aluminum (Al) layer and/or SiO2 micro-spheres on the surface of the films. The photoluminescence (PL) results indicate that compared to the case without any capping, the UV emission is enhanced by a factor ranging from several to dozens times, the films capped with 2.0 nm Al layer and 5.0 µm SiO2 microspheres have the longest highest PL intensity among the samples. The PL enhancements are discussed in terms of increased optical (or electrical) fields around the surface of the films combined with defect passivation after the capping. Our work has proposed a strategy to enhance the UV emissions of ZnO, which will broaden the application potential of ZnO in UV photonics.
Collapse
|
6
|
Mi Y, Yan Y, Wang M, Yang L, He J, Jiang Y. Cascaded microsphere-coupled surface-enhanced Raman spectroscopy (CMS-SERS) for ultrasensitive trace-detection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:559-570. [PMID: 39633797 PMCID: PMC11501333 DOI: 10.1515/nanoph-2021-0620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 12/07/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been widely investigated and employed as a powerful optical analytical technique providing fingerprint vibrational information of molecules with high sensitivity and resolution. In addition to metallic nanostructure, dielectric micro-/nano-structures with extraordinary optical manipulation properties have demonstrated capability in enhanced Raman scattering with ultralow energy losses. Here we report a facile cascaded structure composed of a large microsphere (LMS) and a small microsphere array with Ag nanoparticles as a novel hybrid SERS substrate, for the first time. The cascaded microsphere-coupled SERS substrate provides a platform to increase the molecular concentration, boost the intensity of localized excitation light, and direct the far-field emission, for giant Raman enhancement. It demonstrates the maximum enhancement factor of Raman intensity greater than 108 for the limit of detection down to 10-11 M of 4-nitrothiphenol molecules in aqueous solution. The present work inspires a novel strategy to fabricate cascaded dielectric/metallic micro-/nano-structures superior to traditional SERS substrates towards practical applications in cost-effective and ultrahigh-sensitive trace-detection.
Collapse
Affiliation(s)
- Yanlin Mi
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Yinzhou Yan
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology (Ministry of Education), Beijing100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing100124, China
| | - Mengyuan Wang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Lixue Yang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Jing He
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Yijian Jiang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology (Ministry of Education), Beijing100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
7
|
Miao C, Xu H, Jiang M, Liu Y, Wan P, Kan C. High performance lasing in a single ZnO microwire using Rh nanocubes. OPTICS EXPRESS 2020; 28:20920-20929. [PMID: 32680142 DOI: 10.1364/oe.395746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
High-purity and size-controlled Rh nanocubes (RhNCs) with plasmonic responses in the ultraviolet spectrum range were synthesized; the ultraviolet plasmonic features of RhNCs have potential applications in wide bandgap semiconductors and optoelectronic devices because of their optical tunability and stability, as well as the compatibility with neighboring semiconductor micro/nanostructures. In this work, by incorporating RhNCs, the near-band-edge emission of a single ZnO microwire is considerably enhanced. When optically pumped by a fs pulsed laser at room temperature, RhNCs-plasmon enhanced high-performance whispering gallery mode (WGM) lasing characteristics, including lower lasing threshold, higher Q-factor, and lasing output enhancement, can be achieved from a single ZnO microwire covered by RhNCs. To further probe the modulation effect of RhNCs plasmons on the lasing characteristics of the ZnO microwires, time-resolved photoluminescence (TRPL) and electromagnetic simulation analyses were also performed. Based on our results, it can be concluded that size-controlled RhNCs with ultraviolet energy-tunable plasmons have the potential for use in optoelectronic devices requiring stable and high-performance in the short wavelength spectrum band owing to their unique ultraviolet plasmonic features.
Collapse
|
8
|
Zhu J, Goddard LL. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. NANOSCALE ADVANCES 2019; 1:4615-4643. [PMID: 36133120 PMCID: PMC9419186 DOI: 10.1039/c9na00430k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/09/2019] [Indexed: 05/22/2023]
Abstract
The photonic nanojet (PNJ) is a narrow high-energy beam that was originally found on the back side of all-dielectric spherical structures. It is a unique type of energy concentration mode. The field of PNJs has experienced rapid growth in the past decade: nonspherical and even pixelized PNJ generators based on new physics and principles along with extended photonic applications from linear optics to nonlinear optics have driven the re-evaluation of the role of PNJs in optics and photonics. In this article, we give a comprehensive review for the emerging sub-topics in the past decade with a focus on two specific areas: (1) PNJ generators based on natural materials, artificial materials and nanostructures, and even programmable systems instead of conventional dielectric geometries such as microspheres, cubes, and trihedral prisms, and (2) the emerging novel applications in both linear and nonlinear optics that are built upon the specific features of PNJs. The extraordinary features of PNJs including subwavelength concentration of electromagnetic energy, high intensity focusing spot, and lower Joule heating as compared to plasmonic resonance systems, have made PNJs attractive to diverse fields spanning from optical imaging, nanofabrication, and integrated photonics to biosensing, optical tweezers, and disease diagnosis.
Collapse
Affiliation(s)
- Jinlong Zhu
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| | - Lynford L Goddard
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| |
Collapse
|