1
|
Zhao X, Zhang L, Lv X, Liu J, Liu X, Zhang Y, Zhang D, Li S, Wang Q. Large-area fluorescence enhancement of R6G based on a uniform PVA-Au plasmonic substrate. OPTICS EXPRESS 2022; 30:43281-43292. [PMID: 36523029 DOI: 10.1364/oe.472908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
With the development of surface enhanced fluorescence (SEF) spectroscopy technology, uniform and low-cost SEF substrate is urgently needed. In this paper, the nanocomposite films of poly (vinyl alcohol) (PVA) embedded with in-situ Au particles, their localized surface plasmon resonance (LSPR) bands locate at different wavelengths from 525 nm to 569 nm, were used as substrates to enhance the fluorescence of rhodamine 6 G (R6G). The results shows that the uniform light emission in large area can be measured, and the maximum enhancement factor (EF) is about 13 folds. With increasing concentration of R6G films, the EF first increases and then slowly decreases. It is demonstrated that the EF greatly depends on the matching degree of the emission/excitation of R6G and the LSPR band of PVA-Au substrate. All the results further suggests that the PVA-Au substrate not only realize the fluorescence enhancement but also attenuates the fluorescence quenching at higher concentration. In addition, the local electric distribution of the substrate is simulated by using three-dimensional finite different time-domain (FDTD) to further demonstrate the mechanism of the SEF. This substrate has good development prospects in the fields of fluorescent probes and fluorescence imaging, which can be beneficial to the development of uniform and low-cost SEF substrate.
Collapse
|
2
|
Liu X, Liu J, Zhao X, Zhang D, Wang Q. Ag NPs/PMMA nanocomposite as an efficient platform for fluorescence regulation of riboflavin. OPTICS EXPRESS 2022; 30:34918-34931. [PMID: 36242494 DOI: 10.1364/oe.470454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The fluorescence detection platform has broad application in many fields. In this paper, we report a simple and efficient fluorescence detection platform based on the synergistic effects of Ag nanoparticles (Ag NPs) and polymethylmethacrylate (PMMA). Ag NPs were introduced to realize the plasmon enhancement fluorescence and a thin PMMA layer was used to adjust the distance between Ag NPs and riboflavin. The thin PMMA layer not only enhances the fluorescence by enhancing adhesion of substrate, but also optimizes the plasmon enhancement fluorescence effect by serving as the spacer. The fluorescence enhancement factor based on this platform shows a trend of increasing with the decrease of the concentration of riboflavin, and the detection of riboflavin is realized based on this feature, the lowest detectable concentration is as low as 0.27 µM. In addition to the detection based on plasmon enhancement fluorescence, the detection of riboflavin at low concentrations can also be realized by the shift and broadening of the fluorescence peak due to the Ag NPs. The combination of the two ways of plasmon enhancement fluorescence and shift of the fluorescence spectra is used for the detection of riboflavin. These results show that the platform has great potential applications in the field of detection and sensing.
Collapse
|
3
|
Zhu B, Li N, Ren S, Liu Y, Zhang D, Wang Q, Shi Q, Wang Q, Li S, Zhang B, Wang W, Liu C. Mn 2+ ions substitution inducing improvement of optical performances in ZnAl 2O 4: Cr 3+ phosphors: Energy transfer and ratiometric optical thermometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120321. [PMID: 34481257 DOI: 10.1016/j.saa.2021.120321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Zn1-xMnxAl2O4:0.1 mol% Cr3+ (0.04≤x≤0.16) phosphors with single spinel phase were synthesized by using sol-gel method and the structure, optical and temperature sensing performances were reported herein. The results of X-ray photoelectron spectra indicate that the inversion defects related to octahedral Zn are reduced and the crystal field surrounding Al changes with Mn2+ doping in ZnAl2O4 lattices. Mn2+/Cr3+ co-doped ZnAl2O4 nanophosphors reveal a green emission band assigned to Mn2+ and a series of red emission peaks assigned to Cr3+, respectively. With the concentration of Mn2+ increasing, the intensity of zero phonon line (R line) assigned to Cr3+ increases, reaching the maximum at the optimal Mn2+ concentration of x=0.14. The energy transfer from Mn2+ to Cr3+ is confirmed with the energy transfer efficiency of 83%. The separation between 2E(eg) and 2E(tg) of Cr3+ is enlarged due to Mn2+ dopants giving rise to a change of crystal field. The luminous intensity ratio between two separated emission peaks at 685 nm (R3) and 689 nm (R2) reveals an obvious temperature dependence. The relative sensitivity changes from 3.7 %K-1 to 0.25 %K-1 with the temperature increasing from 80 K to 310 K, which is much larger than that of ZnAl2O4:Cr3+ nanophosphors without Mn2+, indicating its good application prospect in optical thermometry.
Collapse
Affiliation(s)
- Bingjun Zhu
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Naizhen Li
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Shiqi Ren
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Yunlong Liu
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Dong Zhang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China.
| | - Qingru Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Qiang Shi
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Qinglin Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Shuhong Li
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Cailong Liu
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China; Shandong Key Lab. of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Liu J, Wang Q, Sang X, Hu H, Li S, Zhang D, Liu C, Wang Q, Zhang B, Wang W, Song F. Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1037. [PMID: 33921613 PMCID: PMC8072723 DOI: 10.3390/nano11041037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
Lanthanide materials have great applications in optical communication, biological fluorescence imaging, laser, and so on, due to their narrow emission bandwidths, large Stokes' shifts, long emission lifetimes, and excellent photo-stability. However, the photon absorption cross-section of lanthanide ions is generally small, and the luminescence efficiency is relatively low. The effective improvement of the lanthanide-doped materials has been a challenge in the implementation of many applications. The local surface plasmon resonance (LSPR) effect of plasmonic nanoparticles (NPs) can improve the luminescence in different aspects: excitation enhancement induced by enhanced local field, emission enhancement induced by increased radiative decay, and quenching induced by increased non-radiative decay. In addition, plasmonic NPs can also regulate the energy transfer between two close lanthanide ions. In this review, the properties of the nanocomposite systems of lanthanide material and plasmonic NPs are presented, respectively. The mechanism of lanthanide materials regulated by plasmonic NPs and the scientific and technological discoveries of the luminescence technology are elaborated. Due to the large gap between the reported enhancement and the theoretical enhancement, some new strategies applied in lanthanide materials and related development in the plasmonic enhancing luminescence are presented.
Collapse
Affiliation(s)
- Jinhua Liu
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Qingru Wang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Xu Sang
- School of Physics, Nankai University, Tianjin 300071, China; (X.S.); (H.H.)
| | - Huimin Hu
- School of Physics, Nankai University, Tianjin 300071, China; (X.S.); (H.H.)
| | - Shuhong Li
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Dong Zhang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Cailong Liu
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Qinglin Wang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Bingyuan Zhang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Wenjun Wang
- School of Physical Science and Information Technology, Shandong Provinical Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; (J.L.); (S.L.); (D.Z.); (C.L.); (Q.W.); (B.Z.); (W.W.)
| | - Feng Song
- School of Physics, Nankai University, Tianjin 300071, China; (X.S.); (H.H.)
| |
Collapse
|
5
|
Wang Q, Liu J, Huang K, Chen Q, Dong H, Zhang D, Shi Q, Li S, Wang W. Dual coupled effects of low concentration gold nanorods on energy transfer and luminescence enhancement in Eu/Tb co-doped films. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118260. [PMID: 32217442 DOI: 10.1016/j.saa.2020.118260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Eu/Tb co-doped films with low concentration gold nanorods have been prepared using the solution process. The luminescence spectra investigations indicate that the introduction of nanorods can effectively enhance the energy transfer from Tb to Eu under excitation of 292 nm, because of the plasmonic coupling with excited Tb complex. Under excitation of 360 nm, the emission at 612 nm is enhanced, the enhancement factor increases and then decreases as the molar ratio of Tb and Eu increases. The luminescence enhancement is attributed to the metal enhanced luminescence resulting from plasmonic coupling with excited Eu complex. The dual effects of LSPR on energy transfer and emission enhancement are both observed. More details on the luminescence of Eu/Tb co-doped films with nanorods are demonstrated, which gain a deeper understanding of the interactions luminescent-particle and luminescent-luminescent.
Collapse
Affiliation(s)
- Qingru Wang
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinhua Liu
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Kewei Huang
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Qingchao Chen
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Haochuan Dong
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Dong Zhang
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Qiang Shi
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Shuhong Li
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|