1
|
Li W, Zhong X, Huang J, Bai X, Liang Y, Cheng L, Jin L, Tang HC, Lai Y, Guan BO. Wavelength-time-division multiplexed fiber-optic sensor array for wide-field photoacoustic microscopy. PHOTOACOUSTICS 2025; 43:100725. [PMID: 40331015 PMCID: PMC12051156 DOI: 10.1016/j.pacs.2025.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Photoacoustic microscopy (PAM) faces a fundamental trade-off between detection sensitivity and field of view (FOV). While optical ultrasound sensors offer high-sensitivity unfocused detection, implementing multichannel detection remains challenging. Here, we present a wavelength-time-division multiplexed (WTDM) fiber-optic sensor array that assigns distinct wavelengths to individual sensors and employs varying-length delay fibers for temporal separation, enabling efficient multichannel detection through a single photodetector. Using a 4-element sensor array, we achieved an expanded FOV of 5 × 8 mm² while maintaining high temporal resolution (160 kHz A-line rate, 0.25 Hz frame rate) and microscopic spatial resolution (10.7 μm). The system's capabilities were validated through comparative monitoring of cerebral and intestinal hemodynamics in mice during hypercapnia challenge, revealing distinct temporal patterns with notably delayed recovery in cerebral vascular response compared to intestinal vasculature. This WTDM approach establishes a promising platform for large-field, high-speed photoacoustic imaging in biomedical applications.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jie Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xue Bai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Linghao Cheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Long Jin
- MOE Key Laboratory of Laser Life Science, Guangdong Key Laboratory of Laser Life Science, School of Optoelectronic Science & Engineering, South China Normal University, Guangzhou, China
| | - Hao-Cheng Tang
- Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinyan Lai
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
La TA, Ülgen O, Shnaiderman R, Ntziachristos V. Bragg grating etalon-based optical fiber for ultrasound and optoacoustic detection. Nat Commun 2024; 15:7521. [PMID: 39214964 PMCID: PMC11364814 DOI: 10.1038/s41467-024-51497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Fiber-based interferometers receive significant interest as they lead to miniaturization of optoacoustic and ultrasound detectors without the quadratic loss of sensitivity common to piezoelectric elements. Nevertheless, in contrast to piezoelectric crystals, current fiber-based ultrasound detectors operate with narrow ultrasound bandwidth which limits the application range and spatial resolution achieved in imaging implementations. We port the concept of silicon waveguide etalon detection to optical fibers using a sub-acoustic reflection terminator to a Bragg grating embedded etalon resonator (EER), uniquely implementing direct and forward-looking access to incoming ultrasound waves. Precise fabrication of the terminator is achieved by continuously recording the EER spectrum during polishing and fitting the spectra to a theoretically calculated spectrum for the selected thickness. Characterization of the EER inventive design reveals a small aperture (10.1 µm) and an ultra-wide bandwidth (160 MHz) that outperforms other fiber resonators and enables an active detection area and overall form factor that is smaller by more than an order of magnitude over designs based on piezoelectric transducers. We discuss how the EER paves the way for the most adept fiber-based miniaturized sound detection today, circumventing the limitations of currently available designs.
Collapse
Affiliation(s)
- Tai Anh La
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Okan Ülgen
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rami Shnaiderman
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching b. München, Germany.
| |
Collapse
|
3
|
Harary T, Nagli M, Suleymanov N, Goykhman I, Rosenthal A. Large-field-of-view optical-resolution optoacoustic microscopy using a stationary silicon-photonics acoustic detector. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11511. [PMID: 38187934 PMCID: PMC10768684 DOI: 10.1117/1.jbo.29.s1.s11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Significance Optical-resolution optoacoustic microscopy (OR-OAM) enables label-free imaging of the microvasculature by using optical pulse excitation and acoustic detection, commonly performed by a focused optical beam and an ultrasound transducer. One of the main challenges of OR-OAM is the need to combine the excitation and detection in a coaxial configuration, often leading to a bulky setup that requires physically scanning the ultrasound transducer to achieve a large field of view. Aim The aim of this work is to develop an OR-OAM configuration that does not require physically scanning the ultrasound transducer or the acoustic beam path. Approach Our OR-OAM system is based on a non-coaxial configuration in which the detection is performed by a silicon-photonics acoustic detector (SPADE) with a semi-isotropic sensitivity. The system is demonstrated in both epi- and trans-illumination configurations, where in both configurations SPADE remains stationary during the imaging procedure and only the optical excitation beam is scanned. Results The system is showcased for imaging resolution targets and for the in vivo visualization of the microvasculature in a mouse ear. Optoacoustic imaging with focal spots down to 1.3 μ m , lateral resolution of 4 μ m , and a field of view higher than 4 mm in both lateral dimensions were demonstrated. Conclusions We showcase a new OR-OAM design, compatible with epi-illumination configuration. This setup enables relatively large fields of view without scanning the acoustic detector or acoustic beam path. Furthermore, it offers the potential for high-speed imaging within compact, miniature probe and could potentially facilitate the clinical translation of OR-OAM technology.
Collapse
Affiliation(s)
- Tamar Harary
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Michael Nagli
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Nathan Suleymanov
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| | - Ilya Goykhman
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
- The Hebrew University of Jerusalem, Institute of Applied Physics and Institute of Chemistry, Faculty of Science, Jerusalem, Israel
| | - Amir Rosenthal
- Technion - Israel Institute of Technology, The Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Haifa, Israel
| |
Collapse
|
4
|
Nagli M, Moisseev R, Suleymanov N, Kaminski E, Hazan Y, Gelbert G, Goykhman I, Rosenthal A. Silicon photonic acoustic detector (SPADE) using a silicon nitride microring resonator. PHOTOACOUSTICS 2023; 32:100527. [PMID: 37645254 PMCID: PMC10461202 DOI: 10.1016/j.pacs.2023.100527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
Silicon photonics is an emerging platform for acoustic sensing, offering exceptional miniaturization and sensitivity. While efforts have focused on silicon-based resonators, silicon nitride resonators can potentially achieve higher Q-factors, further enhancing sensitivity. In this work, a 30 µm silicon nitride microring resonator was fabricated and coated with an elastomer to optimize acoustic sensitivity and signal fidelity. The resonator was characterized acoustically, and its capability for optoacoustic tomography was demonstrated. An acoustic bandwidth of 120 MHz and a noise-equivalent pressure of ∼ 7 mPa/Hz1/2 were demonstrated. The spatially dependent impulse response agreed with theoretical predictions, and spurious acoustic signals, such as reverberations and surface acoustic waves, had a marginal impact. High image fidelity optoacoustic tomography of a 20 µm knot was achieved, confirming the detector's imaging capabilities. The results show that silicon nitride offers low signal distortion and high-resolution optoacoustic imaging, proving its versatility for acoustic imaging applications.
Collapse
Affiliation(s)
- Michael Nagli
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ron Moisseev
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Nathan Suleymanov
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Eitan Kaminski
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Yoav Hazan
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Gil Gelbert
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ilya Goykhman
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| |
Collapse
|
5
|
Harary T, Hazan Y, Rosenthal A. All-optical optoacoustic micro-tomography in reflection mode. Biomed Eng Lett 2023; 13:475-483. [PMID: 37519878 PMCID: PMC10382435 DOI: 10.1007/s13534-023-00278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 08/01/2023] Open
Abstract
High-resolution optoacoustic imaging at depths beyond the optical diffusion limit is conventionally performed using a microscopy setup where a strongly focused ultrasound transducer samples the image object point-by-point. Although recent advancements in miniaturized ultrasound detectors enables one to achieve microscopic resolution with an unfocused detector in a tomographic configuration, such an approach requires illuminating the entire object, leading to an inefficient use of the optical power, and imposing a trans-illumination configuration that is limited to thin objects. We developed an optoacoustic micro-tomography system in an epi-illumination configuration, in which the illumination is scanned with the detector. The system is demonstrated in phantoms for imaging depths of up to 5 mm and in vivo for imaging the vasculature of a mouse ear. Although image-formation in optoacoustic tomography generally requires static illumination, our numerical simulations and experimental measurements show that this requirement is relaxed in practice due to light diffusion, which homogenizes the fluence in deep tissue layers.
Collapse
Affiliation(s)
- Tamar Harary
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| | - Yoav Hazan
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| |
Collapse
|
6
|
Pan J, Li Q, Feng Y, Zhong R, Fu Z, Yang S, Sun W, Zhang B, Sui Q, Chen J, Shen Y, Li Z. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography. Nat Commun 2023; 14:3250. [PMID: 37277353 DOI: 10.1038/s41467-023-39075-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Photoacoustic tomography (PAT), also known as optoacoustic tomography, is an attractive imaging modality that provides optical contrast with acoustic resolutions. Recent progress in the applications of PAT largely relies on the development and employment of ultrasound sensor arrays with many elements. Although on-chip optical ultrasound sensors have been demonstrated with high sensitivity, large bandwidth, and small size, PAT with on-chip optical ultrasound sensor arrays is rarely reported. In this work, we demonstrate PAT with a chalcogenide-based micro-ring sensor array containing 15 elements, while each element supports a bandwidth of 175 MHz (-6 dB) and a noise-equivalent pressure of 2.2 mPaHz-1/2. Moreover, by synthesizing a digital optical frequency comb (DOFC), we further develop an effective means of parallel interrogation to this sensor array. As a proof of concept, parallel interrogation with only one light source and one photoreceiver is demonstrated for PAT with this sensor array, providing images of fast-moving objects, leaf veins, and live zebrafish. The superior performance of the chalcogenide-based micro-ring sensor array and the effectiveness of the DOFC-enabled parallel interrogation offer great prospects for advancing applications in PAT.
Collapse
Affiliation(s)
- Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China
| | - Qiang Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoming Feng
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ruifeng Zhong
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihao Fu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuixian Yang
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiyuan Sun
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Zhang
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Qi Sui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Jun Chen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
7
|
Hazan Y, Nagli M, Levi A, Rosenthal A. Miniaturized ultrasound detector arrays in silicon photonics using pulse transmission amplitude monitoring. OPTICS LETTERS 2022; 47:5660-5663. [PMID: 37219297 DOI: 10.1364/ol.467652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/05/2022] [Indexed: 05/24/2023]
Abstract
Silicon photonics holds promise for a new generation of ultrasound-detection technology, based on optical resonators, with unparalleled miniaturization levels, sensitivities, and bandwidths, creating new possibilities for minimally invasive medical devices. While existing fabrication technologies are capable of producing dense resonator arrays whose resonance frequency is pressure sensitive, simultaneously monitoring the ultrasound-induced frequency modulation of numerous resonators has remained a challenge. Conventional techniques, which are based on tuning a continuous wave laser to the resonator wavelength, are not scalable due to the wavelength disparity between the resonators, requiring a separate laser for each resonator. In this work, we show that the Q-factor and transmission peak of silicon-based resonators can also be pressure sensitive, exploit this phenomenon to develop a readout scheme based on monitoring the amplitude, rather than frequency, at the output of the resonators using a single-pulse source, and demonstrate its compatibility with optoacoustic tomography.
Collapse
|
8
|
Colchester RJ, Zhang EZ, Beard PC, Desjardins AE. High-resolution sub-millimetre diameter side-viewing all-optical ultrasound transducer based on a single dual-clad optical fibre. BIOMEDICAL OPTICS EXPRESS 2022; 13:4047-4057. [PMID: 35991929 PMCID: PMC9352281 DOI: 10.1364/boe.459486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/31/2023]
Abstract
All-optical ultrasound (OpUS), where ultrasound is both generated and received using light, has emerged as a modality well-suited to highly miniaturised applications. In this work we present a proof-of-concept OpUS transducer built onto a single optical fibre with a highly miniaturised lateral dimension (<0.8 mm). A key innovation was to use a dual-clad optical fibre (DCF) to provide multimode light for ultrasound generation and single mode light for ultrasound reception. The transducer comprised a proximal section of DCF spliced to a short section of single mode fibre (SMF). Multimode light was outcoupled at the splice joint and guided within a square capillary to provide excitation for ultrasound generation. Whilst single mode light was guided to the distal tip of the SMF to a plano-concave microresonator for ultrasound reception. The device was capable of generating ultrasound with pressures >0.4 MPa and a corresponding bandwidth >27 MHz. Concurrent ultrasound generation and reception from the transducer enabled imaging via motorised pull-back allowing image acquisition times of 4 s for an aperture of 20 mm. Image resolution was as low as ~50 µm and 190 µm in the axial and lateral extents, respectively, without the need for image reconstruction. Porcine aorta was imaged ex vivo demonstrating detailed ultrasound images. The unprecedented level of miniaturisation along with the high image quality produced by this device represents a radical new paradigm for minimally invasive imaging.
Collapse
Affiliation(s)
- Richard J. Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Edward Z. Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| |
Collapse
|
9
|
Silicon-photonics acoustic detector for optoacoustic micro-tomography. Nat Commun 2022; 13:1488. [PMID: 35304481 PMCID: PMC8933411 DOI: 10.1038/s41467-022-29179-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Medical ultrasound and optoacoustic (photoacoustic) imaging commonly rely on the concepts of beam-forming and tomography for image formation, enabled by piezoelectric array transducers whose element size is comparable to the desired resolution. However, the tomographic measurement of acoustic signals becomes increasingly impractical for resolutions beyond 100 µm due to the reduced efficiency of piezoelectric elements upon miniaturization. For higher resolutions, a microscopy approach is preferred, in which a single focused ultrasound transducer images the object point-by-point, but the bulky apparatus and long acquisition time of this approach limit clinical applications. In this work, we demonstrate a miniaturized acoustic detector capable of tomographic imaging with spread functions whose width is below 20 µm. The detector is based on an optical resonator fabricated in a silicon-photonics platform coated by a sensitivity-enhancing elastomer, which also effectively eliminates the parasitic effect of surface acoustic waves. The detector is demonstrated in vivo in high-resolution optoacoustic tomography.
Collapse
|
10
|
Volodarsky O, Hazan Y, Nagli M, Rosenthal A. Burst-mode pulse interferometry for enabling low-noise multi-channel optical detection of ultrasound. OPTICS EXPRESS 2022; 30:8959-8973. [PMID: 35299336 DOI: 10.1364/oe.449630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Ultrasound detection via optical resonators can achieve high levels of miniaturization and sensitivity as compared to piezoelectric detectors, but its scale-up from a single detector to an array is highly challenging. While the use of wideband sources may enable parallel interrogation of multiple resonators, it comes at the cost of reduction in the optical power, and ultimately in sensitivity, per channel. In this work we have developed a new interferometric approach to overcome this signal loss by using high-power bursts that are synchronized with the time window in which ultrasound detection is performed. Each burst is composed of a train of low-noise optical pulses which are sufficiently wideband to interrogate an array of resonators with non-overlapping spectra. We demonstrate our method, termed burst-mode pulse interferometry, for interrogating a single resonator in which the optical power was reduced to emulate the power loss per channel that occurs in parallel interrogation of 20 to 200 resonators. The use of bursts has led to up 25-fold improvement in sensitivity without affecting the shape of the acoustic signals, potentially enabling parallel low-noise interrogation of resonator arrays with a single source.
Collapse
|
11
|
Gong Z, Che J, Wei H, Krishnaswamy S. Large dynamic-range fiber Bragg grating sensor system for acoustic emission detection. APPLIED OPTICS 2021; 60:5547-5552. [PMID: 34263843 DOI: 10.1364/ao.427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
A distributed feedback (DFB) fiber laser and fiber Bragg gratings (FBGs) are configured to demodulate the wavelength shifts of FBG dynamic strain sensors. The FBG sensors act as sensing units to detect the dynamic strain and the demodulators while the DFB fiber laser only acts as a narrow-linewidth light source. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the output is subsequently converted into a corresponding intensity change and detected directly by a photodetector. The 0.2 nm linewidth FBG sensor can detect the impact signal with a frequency of up to 300 kHz with a maximum of 29.17 µɛ, which is comparable with the detecting result of the piezoelectric transducer sensor. Moreover, the directional response of the FBG sensor is maximized when the direction of acoustic wave propagation is parallel to the optical fiber. The relation between the sensitivity and the FBG spectrum linewidth is presented, and the detectable strain range versus different FBG linewidths is also discussed.
Collapse
|