1
|
Liu SS, Zhang XT, Ye JS, Feng SF, Wang XK, Han P, Sun WF, Zhang Y. Generation of the stable propagation Bessel beam and the axial multifoci beam with pure phase elements. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:241-251. [PMID: 38437336 DOI: 10.1364/josaa.510157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 03/06/2024]
Abstract
A recently proposed method is upgraded to convert two amplitude phase modulation systems (APMSs) to pure phase elements (PPEs), for generating the stable propagation Bessel beam and the axial multifoci beam, respectively. Phase functions of the PPEs are presented analytically. Numerical simulations by the complete Rayleigh-Sommerfeld method demonstrate that the converted PPE has implemented the same optical functionalities as the corresponding APMS, in either the longitudinal or the transverse direction. Compared with the traditional APMS, the converted PPE possesses many advantages such as fabrication process simplification, system complexity reduction, production cost conservation, alignment error avoidance, and experimental precision enhancement. These inherent advantages position the PPE as an ideal choice and driving force behind further advancements in optical system technology.
Collapse
|
2
|
Zhang X, Zhang XT, Ye JS, Feng SF, Wang XK, Han P, Sun WF, Zhang Y. Generation of stable propagation Bessel beams and axial multifoci beams with binary amplitude filters. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1425-1433. [PMID: 37706744 DOI: 10.1364/josaa.492573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/03/2023] [Indexed: 09/15/2023]
Abstract
The binary amplitude filter (BAF) is employed to generate stable propagation Bessel beams and axial multifoci beams, rather than the traditional continuous amplitude filter (CAF). We introduce a parameter along the azimuth direction, i.e., angular order of the BAF, to weaken transverse intensity asymmetry. Numerical simulations reveal that the BAF implements the same optical functionalities as the CAF. The BAF holds advantages over the traditional CAF: a simpler fabrication process, a lower cost, and a higher experimental accuracy. It is believed that the BAF should have many practical applications in future optical systems.
Collapse
|
3
|
Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat Biotechnol 2023; 41:282-292. [PMID: 36163547 PMCID: PMC9931589 DOI: 10.1038/s41587-022-01450-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
A fundamental challenge in fluorescence microscopy is the photon shot noise arising from the inevitable stochasticity of photon detection. Noise increases measurement uncertainty and limits imaging resolution, speed and sensitivity. To achieve high-sensitivity fluorescence imaging beyond the shot-noise limit, we present DeepCAD-RT, a self-supervised deep learning method for real-time noise suppression. Based on our previous framework DeepCAD, we reduced the number of network parameters by 94%, memory consumption by 27-fold and processing time by a factor of 20, allowing real-time processing on a two-photon microscope. A high imaging signal-to-noise ratio can be acquired with tenfold fewer photons than in standard imaging approaches. We demonstrate the utility of DeepCAD-RT in a series of photon-limited experiments, including in vivo calcium imaging of mice, zebrafish larva and fruit flies, recording of three-dimensional (3D) migration of neutrophils after acute brain injury and imaging of 3D dynamics of cortical ATP release. DeepCAD-RT will facilitate the morphological and functional interrogation of biological dynamics with a minimal photon budget.
Collapse
|
4
|
Li H, Xu J, Zhang H, Cheng W, Xu G, Tang X, Qin Y. Coordinate-transformation iteration algorithm for phase modulation of arbitrary axial light distribution. APPLIED OPTICS 2022; 61:7424-7430. [PMID: 36256044 DOI: 10.1364/ao.468805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Axial light distribution modulation is widely applied in optical tweezers, hard-brittle material cutting, multilayer laser direct writing, etc. To generate arbitrary axial light distribution, the coordinate-transformation iteration (CTI) algorithm is presented. The CTI algorithm unifies equations in low and high numerical aperture (NA) scenarios, using the same iterative algorithm to produce phase computer-generated holograms. In a low NA scenario, twin-foci, flattop, and sin2 distributions have been achieved. In high NA scenarios, multirings, multifoci, and needle-like distributions have been realized in simulation with specific polarized incident beams. Since the CTI algorithm is inherently an efficient one-dimensional phase retrieval algorithm that is not limited by NA, this method has the potential to become a well-received solution for axial light distribution modulation.
Collapse
|
5
|
Zhang H, Xu J, Li H, Xiao Y, Cheng W, Tang X, Qin Y. Stealth dicing of 1-mm-thick glass with aberration-free axial multi-focus beams. OPTICS LETTERS 2022; 47:3003-3006. [PMID: 35709036 DOI: 10.1364/ol.460947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Laser stealth dicing can realize material separation with negligible surface damage, but severe aberrations in thick materials degrade processing quality. This Letter presents a nonlinear point-to-point transformation method combined with spherical aberration compensation to achieve aberration-free axial multi-focus beams. The focus peak intensity increases 7 times at a depth of 0.5 mm after spherical aberration compensation, and reaches 44 times at 3.5 mm. Spherical aberration compensation experiments showed that the width of the heat-affected zone remains almost unchanged at different depths inside the glass, and stealth dicing experiments for 1-mm-thick glass demonstrated that aberration-free 1-focus, 2-foci, and 3-foci stealth dicing can be successfully realized.
Collapse
|
6
|
Wang Z, Jiang L, Li X, Gao S, Zhou S, Liu Y, Huang L, Lu J, Yin J. High efficiency and scalable fabrication of fresnel zone plates using holographic femtosecond pulses. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3081-3091. [PMID: 39634668 PMCID: PMC11501355 DOI: 10.1515/nanoph-2022-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/14/2022] [Indexed: 12/07/2024]
Abstract
To meet the growing demand for photonic integration and device miniaturization, planar diffractive Fresnel zone plates (FZPs) are widely applied in integrated optical systems. However, challenges remain in fabricating FZPs with high efficiency and satisfying the requirement for cross-scale fabrication. This paper details a high efficiency method for fabricating ultrathin FZPs of different scales on metal films by using holographic femtosecond lasers. The FZPs are split into a series of element patterns that are printed in order by using corresponding modulated femtosecond pulses. The fabricated FZPs are spliced by the printed element structures with no FZP size limitation in theory. FZPs with an area varying across three orders of magnitude are presented to demonstrate the capability of cross-scale fabrication. The fabricated FZPs possess an excellent broadband focusing and imaging ability in the visible spectrum. Furthermore, the fabrication of other functional ultrathin lenses, such as axial multifocal zone plates, petal-like zone plates, and FZP arrays, is described, revealing the wide potential for the flexible and scalable fabrication method in on-chip integrated optical systems.
Collapse
Affiliation(s)
- Zhipeng Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China
| | - Xiaowei Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Shuai Gao
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Shipeng Zhou
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yang Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Lingling Huang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing100081, China
| | - Jiangang Lu
- Han’s Laser Technology Centre, Shennan Ave No. 9988, Nanshan District, Shenzhen, Guangdong, 518057, China
| | - Jiangang Yin
- Han’s Laser Technology Centre, Shennan Ave No. 9988, Nanshan District, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
7
|
Shi R, Zhang Y, Zhou T, Kong L. HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging. MEMBRANES 2021; 11:membranes11080634. [PMID: 34436397 PMCID: PMC8400873 DOI: 10.3390/membranes11080634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/12/2023]
Abstract
High-speed, optical-sectioning imaging is highly desired in biomedical studies, as most bio-structures and bio-dynamics are in three-dimensions. Compared to point-scanning techniques, line scanning temporal focusing microscopy (LSTFM) is a promising method that can achieve high temporal resolution while maintaining a deep penetration depth. However, the contrast and axial confinement would still be deteriorated in scattering tissue imaging. Here, we propose a HiLo-based LSTFM, utilizing structured illumination to inhibit the fluorescence background and, thus, enhance the image contrast and axial confinement in deep imaging. We demonstrate the superiority of our method by performing volumetric imaging of neurons and dynamical imaging of microglia in mouse brains in vivo.
Collapse
Affiliation(s)
- Ruheng Shi
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
| | - Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; (Y.Z.); (T.Z.)
| | - Tiankuang Zhou
- Department of Automation, Tsinghua University, Beijing 100084, China; (Y.Z.); (T.Z.)
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
8
|
Ersumo NT, Yalcin C, Antipa N, Pégard N, Waller L, Lopez D, Muller R. A micromirror array with annular partitioning for high-speed random-access axial focusing. LIGHT, SCIENCE & APPLICATIONS 2020; 9:183. [PMID: 33298828 PMCID: PMC7596532 DOI: 10.1038/s41377-020-00420-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
Dynamic axial focusing functionality has recently experienced widespread incorporation in microscopy, augmented/virtual reality (AR/VR), adaptive optics and material processing. However, the limitations of existing varifocal tools continue to beset the performance capabilities and operating overhead of the optical systems that mobilize such functionality. The varifocal tools that are the least burdensome to operate (e.g. liquid crystal, elastomeric or optofluidic lenses) suffer from low (≈100 Hz) refresh rates. Conversely, the fastest devices sacrifice either critical capabilities such as their dwelling capacity (e.g. acoustic gradient lenses or monolithic micromechanical mirrors) or low operating overhead (e.g. deformable mirrors). Here, we present a general-purpose random-access axial focusing device that bridges these previously conflicting features of high speed, dwelling capacity and lightweight drive by employing low-rigidity micromirrors that exploit the robustness of defocusing phase profiles. Geometrically, the device consists of an 8.2 mm diameter array of piston-motion and 48-μm-pitch micromirror pixels that provide 2π phase shifting for wavelengths shorter than 1100 nm with 10-90% settling in 64.8 μs (i.e., 15.44 kHz refresh rate). The pixels are electrically partitioned into 32 rings for a driving scheme that enables phase-wrapped operation with circular symmetry and requires <30 V per channel. Optical experiments demonstrated the array's wide focusing range with a measured ability to target 29 distinct resolvable depth planes. Overall, the features of the proposed array offer the potential for compact, straightforward methods of tackling bottlenecked applications, including high-throughput single-cell targeting in neurobiology and the delivery of dense 3D visual information in AR/VR.
Collapse
Affiliation(s)
- Nathan Tessema Ersumo
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Cem Yalcin
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Nick Antipa
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Nicolas Pégard
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Laura Waller
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Daniel Lopez
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Rikky Muller
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|