1
|
Ansari R, Zhang E, Beard P. Dual-modality rigid endoscope for photoacoustic imaging and white light videoscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:020502. [PMID: 38361504 PMCID: PMC10869116 DOI: 10.1117/1.jbo.29.2.020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Significance There has been significant interest in the development of miniature photoacoustic imaging probes for a variety of clinical uses, including the in situ assessment of tumors and minimally invasive surgical guidance. Most of the previously implemented probes are either side viewing or operate in the optical-resolution microscopy mode in which the imaging depth is limited to ∼ 1 mm . We describe a forward-viewing photoacoustic probe that operates in tomography mode and simultaneously provides white light video images. Aim We aim to develop a dual-modality endoscope capable of performing high-resolution PAT imaging and traditional white light videoscopy simultaneously in the forward-viewing configuration. Approach We used a Fabry-Pérot ultrasound sensor that operates in the 1500 to 1600 nm wavelength range and is transparent in the visible and near infrared region (580 to 1250 nm). The FP sensor was optically scanned using a miniature MEMs mirror located at the proximal end of the endoscope, resulting in a system that is sufficiently compact (10 mm outer diameter) and lightweight for practical endoscopic use. Results The imaging performance of the endoscope is evaluated, and dual-mode imaging capability is demonstrated using phantoms and abdominal organs of an ex vivo mouse including spleen, liver, and kidney. Conclusions The proposed endoscope design offers several advantages including the high acoustic sensitivity and wide detection bandwidth of the FP sensor, dual-mode imaging capability, compact footprint, and an all-optical distal end for improved safety. The dual-mode imaging capability also offers the advantage of correlating the tissue surface morphology with the underlying vascular anatomy. Potential applications include the guidance of laparoscopic surgery and other interventional procedures.
Collapse
Affiliation(s)
- Rehman Ansari
- UCL, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- UCL, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Edward Zhang
- UCL, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- UCL, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Paul Beard
- UCL, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- UCL, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| |
Collapse
|
2
|
Zhu L, Cao H, Ma J, Wang L. Optical ultrasound sensors for photoacoustic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11523. [PMID: 38303991 PMCID: PMC10831871 DOI: 10.1117/1.jbo.29.s1.s11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Significance Photoacoustic (PA) imaging is an emerging biomedical imaging modality that can map optical absorption contrast in biological tissues by detecting ultrasound signal. Piezoelectric transducers are commonly used in PA imaging to detect the ultrasound signals. However, piezoelectric transducers suffer from low sensitivity when the dimensions are reduced and are easily influenced by electromagnetic interference. To avoid these limitations, various optical ultrasound sensors have been developed and shown their great potential in PA imaging. Aim Our study aims to summarize recent progress in optical ultrasound sensor technologies and their applications in PA imaging. Approach The commonly used optical ultrasound sensing techniques and their applications in PA systems are reviewed. The technical advances of different optical ultrasound sensors are summarized. Results Optical ultrasound sensors can provide wide bandwidth and improved sensitivity with miniatured size, which enables their applications in PA imaging. Conclusions The optical ultrasound sensors are promising transducers in PA imaging to provide higher-resolution images and can be used in new applications with their unique advantages.
Collapse
Affiliation(s)
- Liying Zhu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Hongming Cao
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Jun Ma
- Nanfang Hospital, Southern Medical University, Department of Burns, Guangzhou, China
| | - Lidai Wang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Yang L, Xu D, Chen G, Wang A, Li L, Sun Q. Miniaturized fiber optic ultrasound sensor with multiplexing for photoacoustic imaging. PHOTOACOUSTICS 2022; 28:100421. [PMID: 36325305 PMCID: PMC9619189 DOI: 10.1016/j.pacs.2022.100421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
A miniaturized ultrasound sensor based on optical fiber is designed and realized for multichannel parallel ultrasound detection and photoacoustic imaging. The fiber optic sensor is composed of a polymer coating, a reflective mirror and a single-mode optical fiber, with only 125 µm in diameter. By integrating the coherent demodulation technology and multiplexing technology, which using a relatively cheap fixed wavelength laser, hundreds of sensors could work simultaneously. Meanwhile, highly sensitive ultrasound detection has been demonstrated with the noise equivalent pressure as low as 0.46 kPa and the sensor exhibits a nearly omnidirectional directivity. Furthermore, a photoacoustic imaging system based on three sensors working in parallel is demonstrated. High lateral resolutions of 165-217 µm and axial resolutions of 112-131 µm over a depth range of larger than 5 mm are obtained. A three-dimensional phantom imaging experiment is also demonstrated. Benefited from parallel detection, the imaging speed is three times faster than that of a single sensor. The miniaturized fiber optic ultrasound sensor probe provides a competitive alternative for mechanically scanning-free endoscopic imaging, which is beneficial from small size, omnidirectional directivity and parallel detection capability.
Collapse
Affiliation(s)
- Liuyang Yang
- School of Optical and Electronic Information & National Engineering Research Center of Next Generation Internet Access-system (NGIAs) & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hust-Wuxi Research Institute, Wuxi, Jiangsu 214174, China
| | - Dongchen Xu
- School of Optical and Electronic Information & National Engineering Research Center of Next Generation Internet Access-system (NGIAs) & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Geng Chen
- School of Optical and Electronic Information & National Engineering Research Center of Next Generation Internet Access-system (NGIAs) & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Anqi Wang
- School of Optical and Electronic Information & National Engineering Research Center of Next Generation Internet Access-system (NGIAs) & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liangye Li
- School of Optical and Electronic Information & National Engineering Research Center of Next Generation Internet Access-system (NGIAs) & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qizhen Sun
- School of Optical and Electronic Information & National Engineering Research Center of Next Generation Internet Access-system (NGIAs) & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hust-Wuxi Research Institute, Wuxi, Jiangsu 214174, China
| |
Collapse
|
4
|
Czuchnowski J, Prevedel R. Comparing free-space and fiber-coupled detectors for Fabry-Pérot-based all-optical photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:046001. [PMID: 35383428 PMCID: PMC8983068 DOI: 10.1117/1.jbo.27.4.046001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Highly sensitive detection is crucial for all-optical photoacoustic (PA) imaging. However, free-space optical detectors are prone to optical aberrations, which can degrade the pressure sensitivity and result in deteriorated image quality. While spatial mode-filtering has been proposed to alleviate these problems in Fabry-Pérot-based pressure sensors, their real functional advantage has never been properly investigated. AIM We rigorously and quantitatively compare the performance of free-space and fiber-coupled detectors for Fabry-Pérot-based pressure sensors. APPROACH We develop and characterize a quantitative correlative setup capable of simultaneous PA imaging using a free space and a fiber-coupled detector. RESULTS We found that fiber-coupled detectors are superior in terms of both signal level and image quality in realistic all-optical PA tomography settings. CONCLUSIONS Our study has important practical implications in the field of PA imaging, as for most applications and implementations fiber-coupled detectors are relatively easy to employ since they do not require modifications to the core of the system but only to the peripherally located detector.
Collapse
Affiliation(s)
- Jakub Czuchnowski
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
- Collaboration for Joint PhD Degree beween EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Robert Prevedel
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| |
Collapse
|
5
|
Li Q, Rohringer W, Preißer S, Erkkilä MT, Haindl R, Sattmann H, Liu M, Fischer B, Leitgeb R, Drexler W. Depixelation of coherent fiber bundle imaging by fiber-core-targeted scanning. APPLIED OPTICS 2021; 60:7955-7962. [PMID: 34613055 DOI: 10.1364/ao.430537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
A novel fast proximal scanning method, to the best of our knowledge, termed fiber-core-targeted scanning (FCTS), is proposed for illuminating individual fiber cores sequentially to remove the pixelation effect in fiber bundle (FB) imaging. FCTS is based on a galvanometer scanning system. Through a dynamic control of the scan trajectory and speed using the prior knowledge of fiber core positions, FCTS experimentally verifies a precise sequential delivery of laser pulses into fiber cores at a maximal speed of 45,000 cores per second. By applying FCTS on a FB-based photoacoustic forward-imaging probe, the results demonstrate that FCTS eliminates the pixelation effect and improves the imaging quality.
Collapse
|
6
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
7
|
Ansari R, Zhang EZ, Desjardins AE, Beard PC. Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance. OPTICS LETTERS 2020; 45:6238-6241. [PMID: 33186959 PMCID: PMC8219374 DOI: 10.1364/ol.400295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 05/13/2023]
Abstract
A miniature flexible photoacoustic endoscopy probe that provides high-resolution 3D images of vascular structures in the forward-viewing configuration is described. A planar Fabry-Perot ultrasound sensor with a -3dB bandwidth of 53 MHz located at the tip of the probe is interrogated via a flexible fiber bundle and a miniature optical relay system to realize an all-optical probe measuring 7.4 mm in outer diameter at the tip. This approach to photoacoustic endoscopy offers advantages over previous piezoelectric based distal-end scanning probes. These include a forward-viewing configuration in widefield photoacoustic tomography mode, finer spatial sampling (87 µm spatial sampling interval), and wider detection bandwidth (53 MHz) than has been achievable with conventional ultrasound detection technology and an all-optical passive imaging head for safe endoscopic use.
Collapse
Affiliation(s)
- Rehman Ansari
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, 43-45 Foley Street, London W1W 7TS, UK
| | - Edward Z. Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, 43-45 Foley Street, London W1W 7TS, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, 43-45 Foley Street, London W1W 7TS, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, 43-45 Foley Street, London W1W 7TS, UK
| |
Collapse
|
8
|
Lu C, Xiong K, Ma Y, Zhang W, Cheng Z, Yang S. Electrothermal-MEMS-induced nonlinear distortion correction in photoacoustic laparoscopy. OPTICS EXPRESS 2020; 28:15300-15313. [PMID: 32403561 DOI: 10.1364/oe.392493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/25/2020] [Indexed: 05/18/2023]
Abstract
Micro-electro-mechanical systems (MEMS) scanner has significant advantages of miniature size, fast response and high stability, which is particularly applicable to photoacoustic laparoscopy (PAL). However, tilt angle-voltage curve of electrothermal MEMS shows a nonlinear character, which leads to inevitable nonlinear distortion in photoacoustic imaging. To overcome this problem, a nonlinear distortion correction was developed for the high-resolution forward-scanning electrothermal-MEMS-based PAL. The adaptive resampling method (ARM) was introduced to adaptively calibrate the projection of non-uniform scanning region to match the uniform scanning region. The correction performed low time complexity and high portability owing to the adaptive capacity of distortion decomposition in the reconstruction of physical models. Compared with the sample structure, phantom experiments demonstrated that the distortion was calibrated in all directions and the corrected image provided up to 96.82% high structural similarity in local subset. Furthermore, ARM was applied to imaging the abdominal cavity of rat and the vascular morphology was corrected in real-time display within a delay less than 2 seconds. All these results demonstrated that the nonlinear distortion correction possessed timely and effective correction in PAL, which suggested that it had the potential to employ to any other electrothermal-MEMS-based photoacoustic imaging systems for accurate and quantitative functional imaging.
Collapse
|