1
|
Ling L, Lin W, Liang Z, Pan M, Wei C, Chen X, Yang Y, Xiong Z, Guo Y, Wei X, Yang Z. Practical GHz single-cavity all-fiber dual-comb laser for high-speed spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2025; 14:133. [PMID: 40122857 PMCID: PMC11930957 DOI: 10.1038/s41377-025-01811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/14/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Dual-comb spectroscopy (DCS) with few-GHz tooth spacing that provides a better trade-off between spectral resolution and refresh rate is a powerful tool for measuring and analyzing rapidly evolving transient events. Despite such an exciting opportunity, existing technologies compromise either the spectral resolution or refresh rate, leaving few-GHz DCS with robust design largely unmet for frontier applications. In this work, we demonstrate a novel GHz DCS by exploring the multimode interference-mediated spectral filtering effect in an all-fiber ultrashort cavity configuration. The GHz single-cavity all-fiber dual-comb source is seeded by a dual-wavelength mode-locked fiber laser operating at fundamental repetition rates of about 1.0 GHz differing by 148 kHz, which has an excellent stability in the free-running state that the Allan deviation is only 101.7 mHz for an average time of 1 s. Thanks to the large repetition rate difference between the asynchronous dichromatic pulse trains, the GHz DCS enables a refresh time as short as 6.75 μs, making it promising for studying nonrepeatable transient phenomena in real time. To this end, the practicality of the present GHz DCS is validated by successfully capturing the 'shock waves' of balloon and firecracker explosions outdoors. This GHz single-cavity all-fiber dual-comb system promises a noteworthy improvement in acquisition speed and reliability without sacrificing measurement accuracy, anticipated as a practical tool for high-speed applications.
Collapse
Affiliation(s)
- Lin Ling
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Wei Lin
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Zhaoheng Liang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Minjie Pan
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Chiyi Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Xuewen Chen
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Yang Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Zhijin Xiong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Yuankai Guo
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Xiaoming Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China.
- School of Materials Science and Engineering; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China.
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China.
- School of Materials Science and Engineering; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China.
- Research Institute of Future Technology, South China Normal University, Guangzhou, China.
| |
Collapse
|
2
|
Chen X, Lin W, Hu X, Wang W, Liang Z, Ling L, Yang Y, Guo Y, Liu T, Chen D, Wei X, Yang Z. Dynamic gain driven mode-locking in GHz fiber laser. LIGHT, SCIENCE & APPLICATIONS 2024; 13:265. [PMID: 39300091 DOI: 10.1038/s41377-024-01613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Ultrafast lasers have become powerful tools in various fields, and increasing their fundamental repetition rates to the gigahertz (GHz) level holds great potential for frontier scientific and industrial applications. Among various schemes, passive mode-locking in ultrashort-cavity fiber laser is promising for generating GHz ultrashort pulses (typically solitons), for its simplicity and robustness. However, its pulse energy is far lower than the critical value of the existing theory, leading to open questions on the mode-locking mechanism of GHz fiber lasers. Here, we study the passive mode-locking in GHz fiber lasers by exploring dynamic gain depletion and recovery (GDR) effect, and establish a theoretical model for comprehensively understanding its low-threshold mode-locking mechanism with multi-GHz fundamental repetition rates. Specifically, the GDR effect yields an effective interaction force and thereby binds multi-GHz solitons to form a counterpart of soliton crystals. It is found that the resulting collective behavior of the solitons effectively reduces the saturation energy of the gain fiber and permits orders of magnitude lower pulse energy for continuous-wave mode-locking (CWML). A new concept of quasi-single soliton defined in a strongly correlated length is also proposed to gain insight into the dynamics of soliton assembling, which enables the crossover from the present mode-locking theory to the existing one. Specifically, two distinguishing dynamics of Q-switched mode-locking that respectively exhibit rectangular- and Gaussian-shape envelopes are theoretically indicated and experimentally verified in the mode-locked GHz fiber laser through the measurements using both the standard real-time oscilloscope and emerging time-lens magnification. Based on the proposed criterion of CWML, we finally implement a GDR-mediated mode-locked fiber laser with an unprecedentedly high fundamental repetition rate of up to 21 GHz and a signal-to-noise ratio of 85.9 dB.
Collapse
Affiliation(s)
- Xuewen Chen
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Wei Lin
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Xu Hu
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Wenlong Wang
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Zhaoheng Liang
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Lin Ling
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Yang Yang
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Yuankai Guo
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Tao Liu
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Dongdan Chen
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
| | - Xiaoming Wei
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China.
| | - Zhongmin Yang
- School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China.
- Research Institute of Future Technology, South China Normal University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Song D, Yin K, Miao R, Zhang C, Xu Z, Jiang T. Theoretical and experimental investigations of dispersion-managed, polarization-maintaining 1-GHz mode-locked fiber lasers. OPTICS EXPRESS 2023; 31:1916-1930. [PMID: 36785216 DOI: 10.1364/oe.473457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
High-repetition-rate (up to GHz) femtosecond mode-locked lasers have attracted significant attention in many applications, such as broadband spectroscopy, high-speed optical sampling, and so on. In this paper, the characteristics of dispersion-managed, polarization-maintaining (PM) 1-GHz mode-locked fiber lasers were investigated both experimentally and numerically. Three compact and robust 1-GHz fiber lasers operating at anomalous, normal, and near-zero dispersion regimes were demonstrated, respectively. The net dispersion of the linear cavity is adjusted by changing types of PM erbium-doped fibers (EDFs) and semiconductor saturable absorber mirrors (SESAMs) in the cavity. Moreover, the long-term stability of the three mode-locked fiber lasers is proved without external control. In order to better understand the mode-locking dynamics of lasers, a numerical model was constructed for analysis of the 1-GHz fiber laser. Pulse evolution simulations have been carried out for soliton, dissipative-soliton, and stretched-pulse mode-locking regimes under different net dispersion conditions. Experimental results are basically in agreement with the numerical simulations.
Collapse
|
4
|
Lin W, Chen X, Hu X, Luo T, Fan Y, Wang W, Liang Z, Ling L, Hao M, Wei X, Yang Z. Manipulating the polarization dynamics in a >10-GHz Er 3+/Yb 3+ fiber Fabry-Pérot laser. OPTICS EXPRESS 2022; 30:32791-32807. [PMID: 36242334 DOI: 10.1364/oe.469502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
In this work, we report on the vector and scalar soliton dynamics that result from inevitable fiber birefringence in an 8-mm Er3+/Yb3+ fiber based Fabry-Férot (FP) laser that has a free spectral range of up to 12.5 GHz. The generation of polarization-evolving vector solitons can largely degrade the performance of application systems, and the underlying mechanisms and manipulation technologies are yet to be explored. To realize the transition from vector to scalar (linearly polarized) state, we here incorporate the polarization selection effect (PSE) in the simulation model and the numerical results verify that only a small amount of PSE is sufficient for manipulating the soliton dynamics. It also reveals that, prominent polarization-dependent intensity discrimination can be acquired via geometry-induced oblique incidence to the Bragg mirror of the semiconductor saturable absorber mirror (SESAM), and we obtain switchable operating states by tilting the SESAM in the experiments. These efforts create a feasible method to manipulate high-repetition-rate pulse and may shed light on understanding the dissipative soliton dynamics in ultrafast fiber FP lasers.
Collapse
|
5
|
Abstract
In this paper, we report the theoretical results about operating vector solitons with chirped sech pulse shapes. In the operation, the shapes of temporal pulses and corresponding optical spectra in orthogonal directions will change, which are based on soliton parameters. When input orthogonal pulses have the same central wavelength of 1064 nm, the shift from the central wavelength always occurs for orthogonal pulses. When input orthogonal pulses have different central wavelengths of 1063 nm and 1065 nm, output pulse shapes and optical spectra with obvious multiple peak/dip structures can be achieved in orthogonal directions. Our theoretical results are meaningful for the study of vector soliton dynamics and have potential applications in optical communication and optical sensing.
Collapse
|