1
|
Zhao Y, Wu F, Wang C, Hu J, Zhang Z, Liu X, Yang X, Bai P, Chen H, Qian J, Gui J, Xu Y, Leng Y, Li R. Spatiotemporal aberrations due to the groove density mismatching of compression gratings in ultra-intense femtosecond lasers. Sci Rep 2024; 14:18231. [PMID: 39107388 PMCID: PMC11303380 DOI: 10.1038/s41598-024-68833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The groove density mismatching of compression gratings, an often-neglected key issue, can induce significant spatiotemporal aberrations especially for super-intense femtosecond lasers. We mainly investigate the angular chirp and the consequent degradation of the effective focused intensity introduced by the groove density mismatching of compression gratings in ultra-intense femtosecond lasers. The results indicate that the tolerances of grating groove density mismatching will rapidly decrease with the beam aperture or spectral bandwidth increases. For our 100PW laser under construction, the grating groove density mismatching should be as small as 0.001 gr/mm if the drop of effective focused intensity has to be controlled below 15%. More importantly, new angular chirp compensation schemes are proposed for both double-grating and four-grating compressors. This work reveals the importance of groove density matching of compression gratings, and can provide helpful guidelines for the design of ultra-intense femtosecond lasers.
Collapse
Affiliation(s)
- Yang Zhao
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Fenxiang Wu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Cheng Wang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiabing Hu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zongxin Zhang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xingyan Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaojun Yang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Peile Bai
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Haidong Chen
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiayi Qian
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiayan Gui
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yi Xu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
2
|
Li Z, Liu J, Xu Y, Leng Y, Li R. Simulating spatiotemporal dynamics of ultra-intense ultrashort lasers through imperfect grating compressors. OPTICS EXPRESS 2022; 30:41296-41312. [PMID: 36366611 DOI: 10.1364/oe.473439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The upcoming 100 Petawatt (PW) laser is going to provide a possibility to experimentally study vacuum physics. Pulse compression and beam focusing, which can be affected by the spatiotemporal coupling, are two key processes of generating a 100 PW laser and then determine whether its physical objective can be achieved or not. We improved our previous model of the spatiotemporal coupling where only the grating wavefront error and the output optical field of a common compressor configuration were included, and in the improved model, the grating amplitude modulation, the spatio-spectral clipping, and the optical field inside the compressor were added. By using it, we theoretically investigated the spatiotemporal dynamics of an ultra-intense ultrashort laser passing through an imperfect grating compressor for different cases, especially the spatio-temporal/spectral coupling and the on-target intensity variation induced by the phase and amplitude modulation at different grating positions in two different compressor configurations. This study is of importance for both engineering development and physical application of the upcoming Exawatt-class laser.
Collapse
|
3
|
Beam Smoothing Based on Prism Pair for Multistep Pulse Compressor in PW Lasers. PHOTONICS 2022. [DOI: 10.3390/photonics9070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultra-short, ultra-intense lasers provide unprecedented experimental tools and extreme physical conditions, enabling the exploration of the frontiers of basic physics. Recently, a multistep pulse compressor (MPC) method was proposed to overcome the limitations of the size and the damage threshold of gratings in the compressor for the realization of a higher-peak-power laser. In the MPC method, beam smoothing is an important process in the pre-compressor. In this study, beam smoothing based on prism pairs is investigated, and the spatial profiles, as well as spectral dispersion properties, are analyzed. The simulation results demonstrate that the prism pair can effectively smooth the laser beam. Furthermore, beam smoothing is found to be more efficient with a shorter separation distance if two prism pairs are arranged to induce spatial dispersion in one or two directions. The beam smoothing results obtained in this study will help optimize optical designs in petawatt (PW) laser systems, thereby improving their output and operational safety.
Collapse
|