1
|
Zhang C, Zhang L, Zhang R, Chen M, Wei S. Robust 3D phase retrieval via compressed support detection from snapshot diffraction pattern. Comput Biol Med 2024; 177:108644. [PMID: 38810474 DOI: 10.1016/j.compbiomed.2024.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Traditional multislice iterative phase retrieval (MIPR) from snapshot two-dimensional measurements suffers from the two limitations of pre-defined support and iterative stagnation. To eliminate the requirements for priori knowledge of support masks, this paper proposes a multislice iterative phase retrieval algorithm based on compressed support detection and hybrid input-output algorithm (CSD-MIPR-HIO). The CSD-MIPR-HIO algorithm firstly uses compressed support detection to adaptively detect the support masks of each plane from single 2D diffraction intensity, and then uses a hybrid input-output (HIO) iterative algorithm for MIPR. The proposed method breaks the limitations of traditional MIPR algorithms on priori knowledge of support masks and achieve high-quality reconstruction in noisy environments. Numerical and optical experiments confirm the feasibility, superiority, and robustness of our proposed CSD-MIPR-HIO method.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, Anhui Province, 230601, China; Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China; School of Integrated Circuits, Anhui University, Hefei, Anhui Province, 230601, China; Anhui Provincial High-performance Integrated Circuit Engineering Research Center, Anhui University, Hefei, Anhui Province, 230601, China
| | - Liru Zhang
- Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, Anhui Province, 230601, China.
| | - Ru Zhang
- Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, Anhui Province, 230601, China
| | - Mingsheng Chen
- Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, Anhui Province, 230601, China
| | - Sui Wei
- Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, Anhui Province, 230601, China
| |
Collapse
|
2
|
Pan X, Wang S, Zhou Z, Zhou L, Liu P, Li C, Wang W, Zhang C, Dong Y, Zhang Y. An efficient ptychography reconstruction strategy through fine-tuning of large pre-trained deep learning model. iScience 2023; 26:108420. [PMID: 38034346 PMCID: PMC10687283 DOI: 10.1016/j.isci.2023.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
With pre-trained large models and their associated fine-tuning paradigms being constantly applied in deep learning, the performance of large models achieves a dramatic boost, mostly owing to the improvements on both data quantity and quality. Next-generation synchrotron light sources offer ultra-bright and highly coherent X-rays, which are becoming one of the largest data sources for scientific experiments. As one of the most data-intensive scanning-based imaging methodologies, ptychography produces an immense amount of data, making the adoption of large deep learning models possible. Here, we introduce and refine the architecture of a neural network model to improve the reconstruction performance, through fine-tuning large pre-trained model using a variety of datasets. The pre-trained model exhibits remarkable generalization capability, while the fine-tuning strategy enhances the reconstruction quality. We anticipate this work will contribute to the advancement of deep learning methods in ptychography, as well as in broader coherent diffraction imaging methodologies in future.
Collapse
Affiliation(s)
- Xinyu Pan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongzheng Zhou
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhou
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China
| | - Wenhui Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China
| | - Chenglong Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang T, Jiang S, Song P, Wang R, Yang L, Zhang T, Zheng G. Optical ptychography for biomedical imaging: recent progress and future directions [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:489-532. [PMID: 36874495 PMCID: PMC9979669 DOI: 10.1364/boe.480685] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 05/25/2023]
Abstract
Ptychography is an enabling microscopy technique for both fundamental and applied sciences. In the past decade, it has become an indispensable imaging tool in most X-ray synchrotrons and national laboratories worldwide. However, ptychography's limited resolution and throughput in the visible light regime have prevented its wide adoption in biomedical research. Recent developments in this technique have resolved these issues and offer turnkey solutions for high-throughput optical imaging with minimum hardware modifications. The demonstrated imaging throughput is now greater than that of a high-end whole slide scanner. In this review, we discuss the basic principle of ptychography and summarize the main milestones of its development. Different ptychographic implementations are categorized into four groups based on their lensless/lens-based configurations and coded-illumination/coded-detection operations. We also highlight the related biomedical applications, including digital pathology, drug screening, urinalysis, blood analysis, cytometric analysis, rare cell screening, cell culture monitoring, cell and tissue imaging in 2D and 3D, polarimetric analysis, among others. Ptychography for high-throughput optical imaging, currently in its early stages, will continue to improve in performance and expand in its applications. We conclude this review article by pointing out several directions for its future development.
Collapse
Affiliation(s)
- Tianbo Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- These authors contributed equally to this work
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Liming Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Terrance Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Kharitonov K, Mehrjoo M, Ruiz-Lopez M, Keitel B, Kreis S, Gang SG, Pan R, Marras A, Correa J, Wunderer CB, Plönjes E. Single-shot ptychography at a soft X-ray free-electron laser. Sci Rep 2022; 12:14430. [PMID: 36002577 PMCID: PMC9402553 DOI: 10.1038/s41598-022-18605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022] Open
Abstract
In this work, single-shot ptychography was adapted to the XUV range and, as a proof of concept, performed at the free-electron laser FLASH at DESY to obtain a high-resolution reconstruction of a test sample. Ptychography is a coherent diffraction imaging technique capable of imaging extended samples with diffraction-limited resolution. However, its scanning nature makes ptychography time-consuming and also prevents its application for mapping of dynamical processes. Single-shot ptychography can be realized by collecting the diffraction patterns of multiple overlapping beams in one shot and, in recent years, several concepts based on two con-focal lenses were employed in the visible regime. Unfortunately, this approach cannot be extended straightforwardly to X-ray wavelengths due to the use of refractive optics. Here, a novel single-shot ptychography setup utilizes a combination of X-ray focusing optics with a two-dimensional beam-splitting diffraction grating. It facilitates single-shot imaging of extended samples at X-ray wavelengths.
Collapse
Affiliation(s)
| | | | | | | | - Svea Kreis
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Seung-Gi Gang
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Rui Pan
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alessandro Marras
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Jonathan Correa
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Cornelia B Wunderer
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Elke Plönjes
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| |
Collapse
|