1
|
Luo Y, Ye W, Zhou L, Xie J. Manipulating terahertz guided wave excitation with Fabry-Perot cavity-assisted metasurfaces. OPTICS EXPRESS 2024; 32:21216-21229. [PMID: 38859481 DOI: 10.1364/oe.525377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Metasurfaces are emerging as powerful tools for manipulating complex light fields, offering enhanced control in free space and on-chip waveguide applications. Their ability to customize refractive indices and dispersion properties opens up new possibilities in light guiding, yet their efficiency in exciting guided waves, particularly through metallic structures, is not fully explored. Here, we present a new method for exciting terahertz (THz) guided waves using Fabry-Perot (FP) cavity-assisted metasurfaces that enable spin-selective directional coupling and mode selection. Our design uses a substrate-free ridge silicon THz waveguide with air cladding and a supporting slab, incorporating placed metallic metasurfaces to exploit their unique interaction with the guided waves. With the silicon thin layer and air serving as an FP cavity, THz waves enter from the bottom of the device, thereby intensifying the impact of the metasurfaces. The inverse-structured complementary metasurface could enhance excitation performance. We demonstrate selective excitation of TE00 and TE10 modes with directional control, confirmed through simulations and experimental validations using a THz vector network analyzer (VNA) system. This work broadens the potential of metasurfaces for advanced THz waveguide technologies.
Collapse
|
2
|
Zhong H, He T, Meng Y, Xiao Q. Photonic Bound States in the Continuum in Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7112. [PMID: 38005042 PMCID: PMC10672634 DOI: 10.3390/ma16227112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Bound states in the continuum (BIC) have garnered considerable attention recently for their unique capacity to confine electromagnetic waves within an open or non-Hermitian system. Utilizing a variety of light confinement mechanisms, nanostructures can achieve ultra-high quality factors and intense field localization with BIC, offering advantages such as long-living resonance modes, adaptable light control, and enhanced light-matter interactions, paving the way for innovative developments in photonics. This review outlines novel functionality and performance enhancements by synergizing optical BIC with diverse nanostructures, delivering an in-depth analysis of BIC designs in gratings, photonic crystals, waveguides, and metasurfaces. Additionally, we showcase the latest advancements of BIC in 2D material platforms and suggest potential trajectories for future research.
Collapse
Affiliation(s)
| | | | | | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (T.H.); (Y.M.)
| |
Collapse
|
3
|
Xu W, Li H, Duan S, Xu H, Zheng C, Li J, Song C, Zhang Y, Shen Y, Yao J. On-demand multiplexed vortex beams for terahertz polarization detection based on metasurfaces. NANOSCALE 2023; 15:17184-17197. [PMID: 37855083 DOI: 10.1039/d3nr03905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The manipulation of polarization states is crucial for tailoring light-matter interactions and has great applications in fundamental science. Nevertheless, conventional polarization measurement approaches are extremely challenging to determine the polarization state of incident terahertz (THz) beams. The combination of metasurfaces and inhomogeneous vector vortex beams (VVBs) provides a new solution for integrated polarization-related functional devices. Herein, a general design strategy for spin-multiplexing all-silicon metasurfaces is presented and demonstrated in THz polarization detection. The employment of basic building blocks with a high aspect ratio (AR) imparts a greater degree of freedom for generating vector beams, and those basic blocks are subsequently utilized to explore the visualized polarization state. With the assistance of a THz near-field scanning system, we evaluate the capability of reconstructing the incident polarization state from the longitudinal polarization component multiplexed by vortex beams with tight focusing characteristics. Not only that, we also utilize the polarization with dynamically varying behavior as the illumination method to elucidate the evolution trend of the polarization state under a single snapshot and establish a visualized parametric model. This work paves the way to realize ultra-compact THz polarization detection-related devices for future applications in remote sensing, high-resolution imaging, and communications.
Collapse
Affiliation(s)
- Wenhui Xu
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Hui Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Shouxin Duan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Hang Xu
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chenglong Zheng
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jie Li
- Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China
| | - Chunyu Song
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yating Zhang
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yun Shen
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Jianquan Yao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Xiong J, Chen M, Liu J, Wu Z, Teng C, Deng S, Liu H, Qu S, Yuan L, Cheng Y. Ultra-compact on-chip meta-waveguide phase modulator based on split ring magnetic resonance. APPLIED OPTICS 2023; 62:4060-4073. [PMID: 37706718 DOI: 10.1364/ao.487760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 09/15/2023]
Abstract
With the development of photonic integration technology, meta-waveguides have become a new research hotspot. They have broken through the theoretical diffraction limit by virtue of the strong electromagnetic manipulation ability of the metasurface and the strong electromagnetic field limitation and guidance ability of the waveguide. However, the reported meta-waveguides lack research on dynamic modulation. Therefore, we analyze the modulation effect of the metasurface on the optical field in the waveguide and design an ultra-compact on-chip meta-waveguide phase modulator using split ring magnetic resonance. It has a very short modulation length of only 3.65 µm, wide modulation bandwidth of 116.8 GHz, and low energy consumption of 263.49 fJ/bit. By optimizing the structure, the energy consumption can be further reduced to 90.69 fJ/bit. Meta-waveguides provide a promising method for the design of integrated photonic devices.
Collapse
|
6
|
Chen S, Huang J, Yin S, Milosevic MM, Pi H, Yan J, Chong HMH, Fang X. Metasurfaces integrated with a single-mode waveguide array for off-chip wavefront shaping. OPTICS EXPRESS 2023; 31:15876-15887. [PMID: 37157678 DOI: 10.1364/oe.488959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Integration of metasurfaces and SOI (silicon-on-insulator) chips can leverage the advantages of both metamaterials and silicon photonics, enabling novel light shaping functionalities in planar, compact devices that are compatible with CMOS (complementary metal-oxide-semiconductor) production. To facilitate light extraction from a two-dimensional metasurface vertically into free space, the established approach is to use a wide waveguide. However, the multi-modal feature of such wide waveguides can render the device vulnerable to mode distortion. Here, we propose a different approach, where an array of narrow, single-mode waveguides is used instead of a wide, multi-mode waveguide. This approach tolerates nano-scatterers with a relatively high scattering efficiency, for example Si nanopillars that are in direct contact with the waveguides. Two example devices are designed and numerically studied as demonstrations: the first being a beam deflector that deflects light into the same direction regardless of the direction of input light, and the second being a light-focusing metalens. This work shows a straightforward approach of metasurface-SOI chip integration, which could be useful for emerging applications such as metalens arrays and neural probes that require off-chip light shaping from relatively small metasurfaces.
Collapse
|
7
|
Hsieh PY, Fang SL, Lin YS, Huang WH, Shieh JM, Yu P, Chang YC. Integrated metasurfaces on silicon photonics for emission shaping and holographic projection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4687-4695. [PMID: 39634746 PMCID: PMC11501560 DOI: 10.1515/nanoph-2022-0344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 12/07/2024]
Abstract
The emerging applications of silicon photonics in free space, such as LiDARs, free-space optical communications, and quantum photonics, urge versatile emission shaping beyond the capabilities of conventional grating couplers. In these applications, silicon photonic chips deliver free-space emission to detect or manipulate external objects. Light needs to emit from a silicon photonic chip to the free space with specific spatial modes, which produce focusing, collimation, orbital angular momentum, or even holographic projection. A platform that offers versatile shaping of free-space emission, while maintaining the CMOS compatibility and monolithic integration of silicon photonics is in pressing need. Here we demonstrate a platform that integrates metasurfaces monolithically on silicon photonic integrated circuits. The metasurfaces consist of amorphous silicon nanopillars evanescently coupled to silicon waveguides. We demonstrate experimentally diffraction-limited beam focusing with a Strehl ratio of 0.82. The focused spot can be switched between two positions by controlling the excitation direction. We also realize a meta-hologram experimentally that projects an image above the silicon photonic chip. This platform can add a highly versatile interface to the existing silicon photonic ecosystems for precise delivery of free-space emission.
Collapse
Affiliation(s)
- Ping-Yen Hsieh
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Shun-Lin Fang
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Yu-Siang Lin
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Wen-Hsien Huang
- Taiwan Semiconductor Research Institute, Hsinchu30078, Taiwan
| | - Jia-Min Shieh
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
- Taiwan Semiconductor Research Institute, Hsinchu30078, Taiwan
| | - Peichen Yu
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - You-Chia Chang
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| |
Collapse
|
8
|
Lei Y, Xiong Y, Xu F, Chen Z. Metasurface around the side surface of an optical fiber for light focusing. OPTICS EXPRESS 2022; 30:40916-40924. [PMID: 36299016 DOI: 10.1364/oe.471479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Optical fibers integrated with metasurfaces have drawn tremendous interest in recent years due to the great potential for revolutionizing and functionalizing traditional optics. However, in most cases, metasurfaces have been placed on the fiber end-facet where the area is quite limited. Here, by dressing a series of identical dielectric rings around the side surface of the microfiber and adjusting their positions along the microfiber axis, we extracted guided waves into free-space radiation with continuously controllable phase shift and achieved circular-arc-shaped line focusing. We demonstrated that the off-fiber foci could be rotated around the fiber axis by tuning the polarization of the guided waves. In addition, we demonstrated that the shape of the focus could be further tuned by introducing symmetry breaking into the dielectric rings. Our study provides a new dimension for the design of optical fiber devices decorated with metasurfaces.
Collapse
|
9
|
Holographic Tailoring of Structured Light Field with Digital Device. PHOTONICS 2022. [DOI: 10.3390/photonics9070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structured light fields have attracted much attention due to rich spatial degrees of freedom. The tailoring of an arbitrary structured light field on demand is the precondition for the application of structured light. Therefore, the computer holography method used to reconstruct a coherent light field wavefront has been naturally applied for generating structured light. In this work, we comprehensively demonstrate the principles and procedures of pure-phase computer-generated holography (PP-CGH) and binary-amplitude computer-generated holography (BA-CGH) methods for tailoring structured light, realized by two digitally programmable devices: liquid-crystal spatial light modulators (Lc-SLM) and digital micromirror devices (DMD), respectively. Moreover, we first compare the two approaches in detail and clarify the recipe to obtain a high tailoring accuracy and efficiency, which will help researchers to better understand and utilize the holographic tailoring of structured optical fields.
Collapse
|