1
|
Sheng Z, Yue L, Zhao Y, Jin G, Zhang Q, Fu S, Wang X, Wang X, Wang X. A high figure of merit of phonon-polariton waveguide modes with hbn/SiO 2/graphene /hBN ribs waveguide in mid-infrared range. Heliyon 2024; 10:e26727. [PMID: 38486729 PMCID: PMC10937571 DOI: 10.1016/j.heliyon.2024.e26727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Natural hyperbolic materials can confine electromagnetic waves at the nanoscale. In this study, we propose a waveguide design that combines a high quality factor (FOM) with low loss, utilizing hexagonal boron nitride and graphene and gold substrate. The waveguide consists of a dielectric rib with a graphene layer sandwiched between two hBN ribs. Numerical simulations demonstrate the existence of two guided modes in the proposed waveguide within the second reststrahlen band (1360.0 cm-1<ω < 1609.8 cm-1) of hBN. These modes are formed by coupling the hyperbolic phonon polariton (HPhP) of two hBN rib in the middle dielectric rib and are subsequently modulated by a graphene layer. Interestingly, we observe variations in four transmission parameters, namely effective length, figure of merit, device length, and propagation loss of the guided modes, with respect to the operation frequency and gate voltage. By optimizing the waveguide's geometry parameters and dielectric permittivity, the modal properties were analyzed. Simulation results indicate that optimizing the waveguide size parameters enables us to achieve a high FOM of 4.0 × 107. The proposed waveguide design offers a promising approach for designing tunable mid infrared range waveguides on photonic chips, and this concept can be extended to other 2D materials and hyperbolic materials.
Collapse
Affiliation(s)
- Zhou Sheng
- Department of Basic Courses, Guangzhou Maritime University, Guangzhou, 510725, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, China
| | - Liu Yue
- College of Science, Jiamusi University, Jiamusi, 154000, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yue Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Gao Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Qiang Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Shufang Fu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xiangguang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xuan Wang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, China
| | - Xuanzhang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Chinese Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
2
|
Song G, Liu Z, Jia L, Li C, Chang Y. Modulation of Casimir Force between Graphene-Covered Hyperbolic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2168. [PMID: 35808004 PMCID: PMC9268506 DOI: 10.3390/nano12132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
A flexible method for modulating the Casimir force is proposed by combining graphene and hyperbolic materials (HMs). The proposed structure employs two candidates other than graphene. One is hexagonal boron nitride (hBN), a natural HM. The other is porous silicon carbide (SiC), which can be treated as an artificial HM by the effective medium theory. The Casimir force between graphene-covered hBN (porous SiC) bulks is presented at zero temperature. The results show that covering HM with graphene increases the Casimir force monotonically. Furthermore, the force can be modulated by varying the Fermi level, especially at large separation distances. The reflection coefficients are thoroughly investigated, and the enhancement is attributed to the interaction of surface plasmons (SPs) supported by graphene and hyperbolic phonon polaritons (HPhPs) supported by HMs. Moreover, the Casimir force can be controlled by the filling factor of porous SiC. The Casimir force can thus be modulated flexibly by designing desired artificial HMs and tuning the Fermi level. The proposed models have promising applications in practical detection and technological fields.
Collapse
Affiliation(s)
| | - Zhixiang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China; (G.S.); (C.L.); (Y.C.)
| | - Lingchun Jia
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China; (G.S.); (C.L.); (Y.C.)
| | | | | |
Collapse
|
3
|
Wang X, Chang K, Liu W, Wang H, Chen J, Liu K, Chen J, Chen K. Enhanced near-field coupling and tunable topological transitions in hyperbolic van der Waals metasurfaces for optical nanomanipulation. NANOSCALE 2022; 14:7075-7082. [PMID: 35475504 DOI: 10.1039/d1nr08490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hyperbolic metasurfaces based on van der Waals (vdW) materials support propagation of extremely anisotropic polaritons towards nanoscale light compression and manipulation, and thus have great potential in the applications of planar hyperlenses, nanolasing, quantum optics, and ultrasensitive infrared spectroscopy. Two-dimensional hexagonal boron nitride (h-BN) subwavelength gratings as vdW metasurfaces can manipulate the propagation of hyperbolic polaritons at the level of single atomic layers, possessing a higher degree of field confinement and lower losses than conventional media. However, active manipulation of hyperbolic polaritonic waves in h-BN midinfrared metasurfaces remains elusive. Herein, we provide an effective strategy for tunable topological transitions in mid-infrared hyperbolic vdW metasurfaces (HMSs) via enhanced plasmon-phonon polaritons coupling. They are composed of in-plane heterostructures of thin-layer h-BN and monolayer graphene strips (iHBNG) as meta-atoms. The graphene-plasmon-enhanced near-field coupling enables a large tunability of light fields by tailoring the chemical potentials of graphene without frequency shift, which involves topological transitions of polaritonic modes, unidirectional polariton propagation, and local-density-of-state enhancement. Simulated visual near-field distributions of iHBNG metasurfaces reveal the unique transformations of hyperbolic polariton propagations, distinguished from that of individual h-BN and graphene metasurfaces. Our findings provide a platform of optical nanomanipulation towards emerging on-chip polaritonic devices.
Collapse
Affiliation(s)
- Xueli Wang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
| | - Kaili Chang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
| | - Weitao Liu
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
| | - Hongqin Wang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
| | - Junying Chen
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
| | - Kaihui Liu
- State Key Laboratory for Mvaesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Jianing Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Zhang J, Hu Y, Han Q, Liu H, Sun Y, Wu X. Optical axis-driven modulation of near-field radiative heat transfer between two calcite parallel structures. Phys Chem Chem Phys 2022; 24:22102-22108. [DOI: 10.1039/d2cp03303h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the increasing research on the anisotropic optical axis (OA) has provided a novel way to control light. However, this method is rarely applied to modulate the near-field radiative heat...
Collapse
|