1
|
Cai Y, Chen Y, Dorfman K, Xin X, Wang X, Huang K, Wu E. Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping. SCIENCE ADVANCES 2024; 10:eadl3503. [PMID: 38640245 PMCID: PMC11029809 DOI: 10.1126/sciadv.adl3503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Ultrasensitive spectroscopy is an essential component in mid-infrared (MIR) technology. However, the drawbacks of MIR detectors pose challenges to robust MIR spectroscopy at the single-photon level. We propose an MIR single-photon frequency upconversion spectroscopy nonlocally mapping the MIR information to the time domain. Broadband MIR photons from spontaneous parametric downconversion are frequency-upconverted to the near-infrared band with quantum correlation preservation. Via the group delay of fiber, the MIR spectral information within a 1.18-micrometer bandwidth of 2.76 to 3.94 micrometers is then successfully projected to arrival times of correlated photon pairs. Under the conditions of 6.4 × 106 photons per second illumination, the transmission spectra of polymers with single-photon sensitivity are demonstrated using single-pixel detectors. The developed approach circumvents scanning and frequency selection instability, which stands out for its inherent compatibility for evolving environments and scalability for various wavelengths. Because of its high sensitivity and robustness, characterization of biochemical samples and weak measurement of quantum systems are possible to foresee.
Collapse
Affiliation(s)
- Yujie Cai
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yu Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Konstantin Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Center for Theoretical Physics and School of Sciences, Hainan University, Haikou 570228, China
- Himalayan Institute for Advanced Study, Unit of Gopinath Seva Foundation, MIG 38, Avas Vikas, Rishikesh, Uttarakhand 249201, India
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoning Xin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaoying Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Kun Huang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - E Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Wisniowiecki AM, Applegate BE. Electronic frequency shifting enables long, variable working distance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:6579-6591. [PMID: 38420318 PMCID: PMC10898551 DOI: 10.1364/boe.504034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
Increased imaging range is of growing interest in many applications of optical coherence tomography to reduce constraints on sample location, size, and topography. The design of optical coherence tomography systems with sufficient imaging range (e.g., 10s of centimeters) is a significant challenge due to the direct link between imaging range and acquisition bandwidth. We have developed a novel and flexible method to extend the imaging range in optical coherence tomography using electronic frequency shifting, enabling imaging in dynamic environments. In our approach, a laser with a quasi-linear sweep is used to limit the interferometric bandwidth, enabling decoupling of imaging range and acquisition bandwidth, while a tunable lens allows dynamic refocusing in the sample arm. Electronic frequency shifting then removes the need for high frequency digitization. This strategy is demonstrated to achieve high contrast morphological imaging over a > 21 cm working distance range, while maintaining high resolution and phase sensitivity. The system design is flexible to the application while requiring only a simple phase correction in post-processing. By implementing this approach in an auto-focusing paradigm, the proposed method demonstrates strong potential for the translation of optical coherence tomography into emerging applications requiring variable and centimeter-scale imaging ranges.
Collapse
Affiliation(s)
- Anna M. Wisniowiecki
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Wong KKY, Wei X, Ji N, Polli D, Vakoc BJ. Feature issue introduction: ultrafast optical imaging. OPTICS EXPRESS 2023; 31:8201-8204. [PMID: 36859936 DOI: 10.1364/oe.486054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 06/01/2023]
Abstract
This feature issue of Optics Express collects 20 articles that report the most recent progress of ultrafast optical imaging. This review provides a summary of these articles that cover the spectrum of ultrafast optical imaging, from new technologies to applications.
Collapse
|