1
|
Alloo SJ, Paganin DM, Croughan MK, Ahlers JN, Pavlov KM, Morgan KS. Separating edges from microstructure in X-ray dark-field imaging: evolving and devolving perspectives via the X-ray Fokker-Planck equation. OPTICS EXPRESS 2025; 33:3577-3600. [PMID: 39876477 DOI: 10.1364/oe.545960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
A key contribution to X-ray dark-field (XDF) contrast is the diffusion of X-rays by sample structures smaller than the imaging system's spatial resolution; this is related to position-dependent small-angle X-ray scattering. However, some experimental XDF techniques have reported that XDF contrast is also generated by resolvable sample edges. Speckle-based X-ray imaging (SBXI) extracts the XDF by analyzing sample-imposed changes to a reference speckle pattern's visibility. We present an algorithm for SBXI (a variant of our previously developed multimodal intrinsic speckle-tracking (MIST) algorithm) capable of separating these two physically different XDF contrast mechanisms. The algorithm uses what we call the devolving Fokker-Planck equation for paraxial X-ray imaging as its forward model and then solves the associated multimodal inverse problem to retrieve the attenuation, phase, and XDF properties of the sample. Previous MIST variants were based on the evolving Fokker-Planck equation, which considers how a reference-speckle image is modified by the introduction of a sample. The devolving perspective instead considers how the image collected in the presence of the sample and the speckle membrane optically flows in reverse to generate the reference-speckle image when the sample is removed from the system. We compare single- and multiple-exposure multimodal retrieval algorithms from the two Fokker-Planck perspectives. We demonstrate that the devolving perspective can distinguish between two physically different XDF contrast mechanisms, namely, unresolved microstructure- and sharp-edge-induced XDF. This was verified by applying the different retrieval algorithms to two experimental data sets - one phantom sample and one organic sample. We anticipate that this work will be useful in (1) yielding a pair of complementary XDF images that separate sharp-edge diffuse scatter from diffuse scatter due to spatially random unresolved microstructure, (2) XDF computed tomography, where the strong edge XDF signal can lead to strong contaminating streaking artefacts, and (3) sample preparation, as samples will not need to be embedded since the strong XDF edge signal seen between the sample and air can be separated out.
Collapse
|
2
|
Savatović S, Laundon D, De Marco F, Riedel M, Hammel JU, Busse M, Salomé M, Pascolo L, Zanette I, Lewis RM, Herzen J, Thibault P. High-resolution X-ray phase-contrast tomography of human placenta with different wavefront markers. Sci Rep 2025; 15:2131. [PMID: 39820007 PMCID: PMC11739398 DOI: 10.1038/s41598-025-85105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Phase-contrast micro-tomography ([Formula: see text]CT) with synchrotron radiation can aid in the differentiation of subtle density variations in weakly absorbing soft tissue specimens. Modulation-based imaging (MBI) extracts phase information from the distortion of reference patterns, generated by periodic or randomly structured wavefront markers (e.g., gratings or sandpaper). The two approaches have already found application for the virtual inspection of biological samples. Here, we perform high-resolution [Formula: see text]CT scans of an unstained human placenta specimen, using MBI with both a 2D grating and sandpaper as modulators, as well as conventional propagation-based imaging (PBI). The 3D virtual representation of placenta offers a valuable tool for analysing its intricate branching villous network and vascular structure, providing new insights into its complex architecture. Within this study, we assess reconstruction quality achieved with all three evaluated phase-contrast methods. Both MBI datasets are processed with the Unified Modulated Pattern Analysis (UMPA) model, a pattern-matching algorithm. In order to evaluate the benefits and suitability of MBI for virtual histology, we discuss how the complexities of the technique influence image quality and correlate the obtained volumes to 2D techniques, such as conventional histology and X-ray fluorescence (XRF) elemental maps.
Collapse
Affiliation(s)
- Sara Savatović
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany.
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Department of Physics, University of Trieste, 34127, Trieste, Italy.
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy.
| | - Davis Laundon
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, University Rd, Southampton, SO17 1BJ, UK
| | - Fabio De Marco
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy
| | - Mirko Riedel
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Madleen Busse
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Murielle Salomé
- ESRF - The European Synchrotron Radiation Facility, 38043, Grenoble, France
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | - Irene Zanette
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy
| | - Rohan M Lewis
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, University Rd, Southampton, SO17 1BJ, UK
| | - Julia Herzen
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Pierre Thibault
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy
| |
Collapse
|
3
|
Celestre R, Quénot L, Ninham C, Brun E, Fardin L. Review and experimental comparison of speckle-tracking algorithms for X-ray phase contrast imaging. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:180-199. [PMID: 39689035 PMCID: PMC11708844 DOI: 10.1107/s1600577524010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024]
Abstract
X-ray speckles have been used in a wide range of experiments, including imaging (and tomography), wavefront sensing, spatial coherence measurements, X-ray photon correlation spectroscopy and ptychography. In this review and experimental comparison, we focus on using X-ray near-field speckle grains as wavefront markers and numerical methods for retrieving the phase information they contain. We present the most common tracking methods, introducing the existing algorithms with their specifications and comparing their performances under various experimental conditions. This comparison includes applications to different types of samples: phantoms for quantitative analysis and complex samples for assessing image quality. Our goal is to unify concepts from several speckle tracking methods using consistent terminology and equation formalism, while keeping the discussion didactic and accessible to a broad audience.
Collapse
Affiliation(s)
- Rafael Celestre
- Synchrotron SOLEILL’Orme des Merisiers, Dèpartementale 128Saint-AubinFrance
| | - Laurène Quénot
- Univ. Grenoble Alpes, INSERM, UA7 STROBE, Grenoble, France
| | | | - Emmanuel Brun
- Univ. Grenoble Alpes, INSERM, UA7 STROBE, Grenoble, France
| | - Luca Fardin
- Univ. Grenoble Alpes, INSERM, UA7 STROBE, Grenoble, France
| |
Collapse
|
4
|
Zandarco S, Günther B, Riedel M, Breitenhuber G, Kirst M, Achterhold K, Pfeiffer F, Herzen J. Speckle tracking phase-contrast computed tomography at an inverse Compton X-ray source. OPTICS EXPRESS 2024; 32:28472-28488. [PMID: 39538663 DOI: 10.1364/oe.528701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 11/16/2024]
Abstract
Speckle-based X-ray imaging (SBI) is a phase-contrast method developed at and for highly coherent X-ray sources, such as synchrotrons, to increase the contrast of weakly absorbing objects. Consequently, it complements the conventional attenuation-based X-ray imaging. Meanwhile, attempts to establish SBI at less coherent laboratory sources have been performed, ranging from liquid metal-jet X-ray sources to microfocus X-ray tubes. However, their lack of coherence results in interference fringes not being resolved. Therefore, algorithms were developed which neglect the interference effects. Here, we demonstrate phase-contrast computed tomography employing SBI in a laboratory-setting with an inverse Compton X-ray source. In this context, we investigate and compare also the performance of the at synchrotron conventionally used phase-retrieval algorithms for SBI, unified modulated pattern analysis (UMPA) with a phase-retrieval method developed for low coherence systems (LCS). We successfully retrieve a full computed tomography in a phantom as well as in biological specimens, such as larvae of the greater wax moth (Galleria mellonella), a model system for studies of pathogens and infections. In this context, we additionally demonstrate quantitative phase-contrast computed tomography using SBI at a low coherent set-up.
Collapse
|
5
|
Smith R, Morgan K, McCarron A, Cmielewski P, Reyne N, Parsons D, Donnelley M. Ultra-fast in vivodirectional dark-field x-ray imaging for visualising magnetic control of particles for airway gene delivery. Phys Med Biol 2024; 69:105025. [PMID: 38640914 DOI: 10.1088/1361-6560/ad40f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective.Magnetic nanoparticles can be used as a targeted delivery vehicle for genetic therapies. Understanding how they can be manipulated within the complex environment of live airways is key to their application to cystic fibrosis and other respiratory diseases.Approach.Dark-field x-ray imaging provides sensitivity to scattering information, and allows the presence of structures smaller than the detector pixel size to be detected. In this study, ultra-fast directional dark-field synchrotron x-ray imaging was utlilised to understand how magnetic nanoparticles move within a live, anaesthetised, rat airway under the influence of static and moving magnetic fields.Main results.Magnetic nanoparticles emerging from an indwelling tracheal cannula were detectable during delivery, with dark-field imaging increasing the signal-to-noise ratio of this event by 3.5 times compared to the x-ray transmission signal. Particle movement as well as particle retention was evident. Dynamic magnetic fields could manipulate the magnetic particlesin situ. Significance.This is the first evidence of the effectiveness ofin vivodark-field imaging operating at these spatial and temporal resolutions, used to detect magnetic nanoparticles. These findings provide the basis for further development toward the effective use of magnetic nanoparticles, and advance their potential as an effective delivery vehicle for genetic agents in the airways of live organisms.
Collapse
Affiliation(s)
- Ronan Smith
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Kaye Morgan
- Department of Physics, Monash University, Wellington Road, Melbourne, Australia
| | - Alexandra McCarron
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Patricia Cmielewski
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Nicole Reyne
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| |
Collapse
|
6
|
Savatović S, Zdora MC, De Marco F, Bikis C, Olbinado M, Rack A, Müller B, Thibault P, Zanette I. Multi-resolution X-ray phase-contrast and dark-field tomography of human cerebellum with near-field speckles. BIOMEDICAL OPTICS EXPRESS 2024; 15:142-161. [PMID: 38223169 PMCID: PMC10783905 DOI: 10.1364/boe.502664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.
Collapse
Affiliation(s)
- Sara Savatović
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Marie-Christine Zdora
- Department of Biomedical Engineering, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Fabio De Marco
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Christos Bikis
- Psychiatric Hospital in Winterthur, Wieshofstrasse 102, 8408 Winterthur, Switzerland
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
| | - Margie Olbinado
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Rack
- ESRF – The European Synchrotron, CS40220, CEDEX 09, 38043 Grenoble, France
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
| | - Pierre Thibault
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Irene Zanette
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| |
Collapse
|