1
|
Chen H, Cao C, He P, Wang H, Du H, Wu X, Zhang Y, Ren D, Liu T, Ma Y, Fan C, Zhao Z. Phase aberration compensation and parasitic fringes elimination in digital holographic microscopy based on polarization. OPTICS EXPRESS 2025; 33:15588-15602. [PMID: 40219469 DOI: 10.1364/oe.560706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
In digital holographic microscopy, parasitic fringes caused by optical components and phase aberration introduced by the optical system are crucial issues that constrain measurement accuracy and reconstructed image quality. This paper presents a straightforward and effective physical approach to simultaneously compensate aberration and eliminate parasitic fringes in reflective holographic microscopy. By modulating the polarization states of both the parasitic beams and the sample beam, combined with a polarized beam splitter element, parasitic fringes can be efficiently eliminated. An improved reflective double exposure optical configuration is integrated into the proposed holographic microscopy. A criterion based on the number of interference fringes is developed to ensure the consistency between the phase aberrations recorded by the flat mirror and that recorded by the sample, which significantly improves the accuracy and robustness of reflective double exposure methods. Experimental results of a terahertz chip and a SoC chip demonstrate that the proposed method can eliminate arbitrary parasitic fringes while preserving image details, which is a challenge with traditional image filtering methods. Moreover, the proposed improved reflective double exposure method can compensate all aberrations regardless of the sample's morphology, without the need for complex numerical computations, prior knowledge of the morphology, or the troublesome and challenging optical alignment process.
Collapse
|
2
|
Li S, Wang B, Wang X. Untrained physics-driven aberration retrieval network. OPTICS LETTERS 2024; 49:4545-4548. [PMID: 39146099 DOI: 10.1364/ol.523377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
In the field of coherent diffraction imaging, phase retrieval is essential for correcting the aberration of an optic system. For estimating aberration from intensity, conventional methods rely on neural networks whose performance is limited by training datasets. In this Letter, we propose an untrained physics-driven aberration retrieval network (uPD-ARNet). It only uses one intensity image and iterates in a self-supervised way. This model consists of two parts: an untrained neural network and a forward physical model for the diffraction of the light field. This physical model can adjust the output of the untrained neural network, which can characterize the inverse process from the intensity to the aberration. The experiments support that our method is superior to other conventional methods for aberration retrieval.
Collapse
|
3
|
Huang Z, Cao L. Quantitative phase imaging based on holography: trends and new perspectives. LIGHT, SCIENCE & APPLICATIONS 2024; 13:145. [PMID: 38937443 PMCID: PMC11211409 DOI: 10.1038/s41377-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 06/29/2024]
Abstract
In 1948, Dennis Gabor proposed the concept of holography, providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development, holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics, biology, and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field, non-contact, precise, and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples, which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here, we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain, and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles, technical approaches, and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology, analytical chemistry, clinical sciences, wavefront sensing, and semiconductor production.
Collapse
Affiliation(s)
- Zhengzhong Huang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Giugliano G, Schiavo M, Pirone D, Běhal J, Bianco V, Montefusco S, Memmolo P, Miccio L, Ferraro P, Medina DL. Investigation on lysosomal accumulation by a quantitative analysis of 2D phase-maps in digital holography microscopy. Cytometry A 2024; 105:323-331. [PMID: 38420869 DOI: 10.1002/cyto.a.24833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Lysosomes are the terminal end of catabolic pathways in the cell, as well as signaling centers performing important functions such as the recycling of macromolecules, organelles, and nutrient adaptation. The importance of lysosomes in human health is supported by the fact that the deficiency of most lysosomal genes causes monogenic diseases called as a group Lysosomal Storage Diseases (LSDs). A common phenotypic hallmark of LSDs is the expansion of the lysosomal compartment that can be detected by using conventional imaging methods based on immunofluorescence protocols or overexpression of tagged lysosomal proteins. These methods require the alteration of the cellular architecture (i.e., due to fixation methods), can alter the behavior of cells (i.e., by the overexpression of proteins), and require sample preparation and the accurate selection of compatible fluorescent markers in relation to the type of analysis, therefore limiting the possibility of characterizing cellular status with simplicity. Therefore, a quantitative and label-free methodology, such as Quantitative Phase Imaging through Digital Holographic (QPI-DH), for the microscopic imaging of lysosomes in health and disease conditions may represent an important advance to study and effectively diagnose the presence of lysosomal storage in human disease. Here we proof the effectiveness of the QPI-DH method in accomplishing the detection of the lysosomal compartment using mouse embryonic fibroblasts (MEFs) derived from a Mucopolysaccharidosis type III-A (MSP-IIIA) mouse model, and comparing them with wild-type (WT) MEFs. We found that it is possible to identify label-free biomarkers able to supply a first pre-screening of the two populations, thus showing that QPI-DH can be a suitable candidate to surpass fluorescent drawbacks in the detection of lysosomes dysfunction. An appropriate numerical procedure was developed for detecting and evaluate such cellular substructures from in vitro cells cultures. Results reported in this study are encouraging about the further development of the proposed QPI-DH approach for such type of investigations about LSDs.
Collapse
Affiliation(s)
- Giusy Giugliano
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Michela Schiavo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Daniele Pirone
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Jaromír Běhal
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
- Department of Optics, Palacký University, Olomouc, Czech Republic
| | - Vittorio Bianco
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Pozzuoli, Napoli, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| |
Collapse
|