1
|
Qi X, Bertling K, Torniainen J, Kong F, Gillespie T, Primiero C, Stark MS, Dean P, Indjin D, Li LH, Linfield EH, Davies AG, Brünig M, Mills T, Rosendahl C, Soyer HP, Rakić AD. Terahertz in vivo imaging of human skin: Toward detection of abnormal skin pathologies. APL Bioeng 2024; 8:016117. [PMID: 38476403 PMCID: PMC10932572 DOI: 10.1063/5.0190573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Terahertz (THz) imaging has long held promise for skin cancer detection but has been hampered by the lack of practical technological implementation. In this article, we introduce a technique for discriminating several skin pathologies using a coherent THz confocal system based on a THz quantum cascade laser. High resolution in vivo THz images (with diffraction limited to the order of 100 μm) of several different lesion types were acquired and compared against one another using the amplitude and phase values. Our system successfully separated pathologies using a combination of phase and amplitude information and their respective surface textures. The large scan field (50 × 40 mm) of the system allows macroscopic visualization of several skin lesions in a single frame. Utilizing THz imaging for dermatological assessment of skin lesions offers substantial additional diagnostic value for clinicians. THz images contain information complementary to the information contained in the conventional digital images.
Collapse
Affiliation(s)
- X. Qi
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - K. Bertling
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - J. Torniainen
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - F. Kong
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Woolloongabba QLD 4102, Australia
| | - T. Gillespie
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - C. Primiero
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Woolloongabba QLD 4102, Australia
| | - M. S. Stark
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Woolloongabba QLD 4102, Australia
| | - P. Dean
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - D. Indjin
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - L. H. Li
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - E. H. Linfield
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - A. G. Davies
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - M. Brünig
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - T. Mills
- OscillaDx Pty Ltd, Brisbane, Queensland, Australia
| | - C. Rosendahl
- General Practice Clinical Unit, Faculty of Medicinee, The University of Queensland, Herston QLD 4029, Australia
| | - H. P. Soyer
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Woolloongabba QLD 4102, Australia
| | - A. D. Rakić
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|