1
|
Bauer T, Davis TJ, Frank B, Dreher P, Janoschka D, Meiler TC, Meyer zu Heringdorf FJ, Kuipers L, Giessen H. Ultrafast Time Dynamics of Plasmonic Fractional Orbital Angular Momentum. ACS PHOTONICS 2023; 10:4252-4258. [PMID: 38145172 PMCID: PMC10740006 DOI: 10.1021/acsphotonics.3c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/26/2023]
Abstract
The creation and manipulation of optical vortices, both in free space and in two-dimensional systems such as surface plasmon polaritons (SPPs), has attracted widespread attention in nano-optics due to their robust topological structure. Coupled with strong spatial confinement in the case of SPPs, these plasmonic vortices and their underlying orbital angular momentum (OAM) have promise in novel light-matter interactions on the nanoscale with applications ranging from on-chip particle manipulation to tailored control of plasmonic quasiparticles. Until now, predominantly integer OAM values have been investigated. Here, we measure and analyze the time evolution of fractional OAM SPPs using time-resolved two-photon photoemission electron microscopy and near-field optical microscopy. We experimentally show the field's complex rotational dynamics and observe the beating of integer OAM eigenmodes at fractional OAM excitations. With our ability to access the ultrafast time dynamics of the electric field, we can follow the buildup of the plasmonic fractional OAM during the interference of the converging surface plasmons. By adiabatically increasing the phase discontinuity at the excitation boundary, we track the total OAM, leading to plateaus around integer OAM values that arise from the interplay between intrinsic and extrinsic OAM.
Collapse
Affiliation(s)
- Thomas Bauer
- Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Delft 2628 CJ, The Netherlands
| | - Timothy J. Davis
- School
of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- 4-th
Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
- Faculty
of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Bettina Frank
- 4-th
Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Pascal Dreher
- Faculty
of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
| | - David Janoschka
- Faculty
of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Tim C. Meiler
- 4-th
Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Frank-J. Meyer zu Heringdorf
- Faculty
of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
| | - L. Kuipers
- Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Delft 2628 CJ, The Netherlands
| | - Harald Giessen
- 4-th
Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Zhang Q, Liu Z, Cheng Z. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2251. [PMID: 37570568 PMCID: PMC10421227 DOI: 10.3390/nano13152251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The coupling of the spin-orbit angular momentum of photons in a focused spatial region can enhance the localized optical field's chirality. In this paper, a scheme for producing a superchiral optical field in a 4π microscopic system is presented by tightly focusing two counter-propagating spiral wavefronts. We calculate the optical forces and torques exerted on a chiral dipole by the chiral light field and reveal the chiral forces by combining the light field and dipoles. Results indicate that, in addition to the general optical force, particles' motion would be affected by a chiral force that is directly related to the particle chirality. This chiral mechanical effect experienced by the electromagnetic dipoles excited on a chiral particle could be characterized by the behaviors of chirality density and flux, which are, respectively, associated with the reactive and dissipative components of the chiral forces. This work facilitates the advancement of optical separation and manipulation techniques for chiral particles.
Collapse
Affiliation(s)
| | - Zhirong Liu
- Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
| | | |
Collapse
|
3
|
Shukla A, Tiwari S, Majumder A, Saha K, Pavan Kumar GV. Opto-thermoelectric trapping of fluorescent nanodiamonds on plasmonic nanostructures. OPTICS LETTERS 2023; 48:2937-2940. [PMID: 37262248 DOI: 10.1364/ol.491431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Deterministic optical manipulation of fluorescent nanodiamonds (FNDs) in fluids has emerged as an experimental challenge in multimodal biological imaging. Designing and developing nano-optical trapping strategies to serve this purpose is an important task. In this Letter, we show how chemically prepared gold nanoparticles and silver nanowires can facilitate an opto-thermoelectric force to trap individual entities of FNDs using a long working distance lens, low power-density illumination (532-nm laser, 12 µW/µm2). Our trapping configuration combines the thermoplasmonic fields generated by individual plasmonic nanoparticles and the opto-thermoelectric effect facilitated by the surfactant to realize a nano-optical trap down to a single FND that is 120 nm in diameter. We use the same trapping excitation source to capture the spectral signatures of single FNDs and track their position. By tracking the FND, we observe the differences in the dynamics of the FND around different plasmonic structures. We envisage that our drop-casting platform can be extrapolated to perform targeted, low-power trapping, manipulation, and multimodal imaging of FNDs inside biological systems such as cells.
Collapse
|
4
|
Oktafiani F, Chen JQ, Lee PT. Dynamic single microparticle manipulation in the far-field region using plasmonic vortex lens multiple arms with a circular groove. NANOSCALE ADVANCES 2023; 5:378-384. [PMID: 36756260 PMCID: PMC9846437 DOI: 10.1039/d2na00670g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Recent development of particle manipulation has led to high demand for dynamic optical tweezer structures. However, confining and rotating a single microparticle in the far-field region with a uniform potential distribution remains a complicated task. A plasmonic vortex lens (PVL) has been proven to easily rotate the dielectric particle owing to its effect on orbital angular momentum (OAM). Here we propose and demonstrate PVL multiple arms with a circular groove (CG). The device consists of a multiple arm spiral slit that generates a plasmonic vortex (PV) and a circular groove to bring the PV from the surface to the far-field region. Numerical simulations are performed to calculate the intensity distribution of the primary ring, the optical force and potential. The primary ring size can be adjusted using different polarization directions. PVL 2-arms with a CG has primary ring sizes of 1082 nm under right-handed circular polarization (RCP) and 517 nm under left-handed circular polarization (LCP). Based on these primary ring sizes, a 1 μm polystyrene (PS) bead can be rotated under RCP with a minimum required power of 7.45 mW and trapped under LCP with a minimum required power of 11.84 mW. For PVL 4-arms with a CG under RCP illumination, we optimize the uniform potential distribution by carefully selecting the radius of the groove. Using a groove radius of 1050 nm, we obtain the potential difference between the smallest and largest depth along the x- and y-directions of only 70 k B T/W with a minimum required power of 14.86 mW. The method and design discussed here offer an efficient way to manipulate microparticles for micro-rotors, cell dynamic analysis, etc.
Collapse
Affiliation(s)
- Fitri Oktafiani
- International PhD Program in Photonics (IPPP), College of Electrical and Computer Engineering, University System of Taiwan (National Yang Ming Chiao Tung University) Taiwan
| | - Jun-Quan Chen
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Po-Tsung Lee
- International PhD Program in Photonics (IPPP), College of Electrical and Computer Engineering, University System of Taiwan (National Yang Ming Chiao Tung University) Taiwan
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| |
Collapse
|
5
|
Molecular-Scale Plasmon Trapping via a Graphene-Hybridized Tip-Substrate System. MATERIALS 2022; 15:ma15134627. [PMID: 35806751 PMCID: PMC9267308 DOI: 10.3390/ma15134627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
We theoretically investigated the plasmon trapping stability of a molecular-scale Au sphere via designing Au nanotip antenna hybridized with a graphene sheet embedded Silica substrate. A hybrid plasmonic trapping model is self-consistently built, which considers the surface plasmon excitation in the graphene-hybridized tip-substrate system for supporting the scattering and gradient optical forces on the optical diffraction-limit broken nanoscale. It is revealed that the plasmon trapping properties, including plasmon optical force and potential well, can be unprecedentedly adjusted by applying a graphene sheet at proper Fermi energy with respect to the designed tip-substrate geometry. This shows that the plasmon potential well of 218 kBT at room temperature can be determinately achieved for trapping of a 10 nm Au sphere by optimizing the surface medium film layer of the designed graphene-hybridized Silica substrate. This is explained as the crucial role of graphene hybridization participating in plasmon enhancement for generating the highly localized electric field, in return augmenting the trapping force acting on the trapped sphere with a deepened potential well. This study can be helpful for designing the plasmon trapping of very small particles with new routes for molecular-scale applications for molecular-imaging, nano-sensing, and high-sensitive single-molecule spectroscopy, etc.
Collapse
|
6
|
Zeng K, Pu J, Wu Y, Xiao D, Wu X. Centrifugal motion of an optically levitated particle. OPTICS LETTERS 2021; 46:4635-4638. [PMID: 34525067 DOI: 10.1364/ol.435167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Levitated optomechanical systems experience a tremendous development on detecting weak force and torque with the center of mass motion and rotation of the levitated particle. Here the levitated optomechanical system is established on a rotating platform, and the centrifugal motion of the particle is observed after rotating the optical platform. The centrifugal displacement of the particle is experimentally proven to show a quadratic function relation with the rotation speed, and the stiffness of the trap and the mass of the levitated particle are obtained from it separately. Furthermore, the centrifugal motion makes the particle deviate from the laser focus center, which would decrease the particle spin speed. These results will help to understand the centrifugal motion and fully consider this effect when the optomechanical system rotates.
Collapse
|
7
|
Singh L, Maccaferri N, Garoli D, Gorodetski Y. Directional Plasmonic Excitation by Helical Nanotips. NANOMATERIALS 2021; 11:nano11051333. [PMID: 34069339 PMCID: PMC8158748 DOI: 10.3390/nano11051333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023]
Abstract
The phenomenon of coupling between light and surface plasmon polaritons requires specific momentum matching conditions. In the case of a single scattering object on a metallic surface, such as a nanoparticle or a nanohole, the coupling between a broadband effect, i.e., scattering, and a discrete one, such as surface plasmon excitation, leads to Fano-like resonance lineshapes. The necessary phase matching requirements can be used to engineer the light–plasmon coupling and to achieve a directional plasmonic excitation. Here, we investigate this effect by using a chiral nanotip to excite surface plasmons with a strong spin-dependent azimuthal variation. This effect can be described by a Fano-like interference with a complex coupling factor that can be modified thanks to a symmetry breaking of the nanostructure.
Collapse
Affiliation(s)
- Leeju Singh
- Electrical and Electronics Engineering Department, Ariel University, Ariel 40700, Israel;
| | - Nicolò Maccaferri
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg;
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy
- Correspondence: (D.G.); (Y.G.)
| | - Yuri Gorodetski
- Electrical and Electronics Engineering Department, Ariel University, Ariel 40700, Israel;
- Mechanical Engineering and Mechatronics Department, Ariel University, Ariel 40700, Israel
- Correspondence: (D.G.); (Y.G.)
| |
Collapse
|
8
|
Zhang W, Zhang Y, Zhang S, Wang Y, Yang W, Min C, Yuan X. Nonlinear modulation on optical trapping in a plasmonic bowtie structure. OPTICS EXPRESS 2021; 29:11664-11673. [PMID: 33984942 DOI: 10.1364/oe.422493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Surface plasmon optical tweezers based on micro- and nano-structures are capable of capturing particles in a very small spatial scale and have been widely used in many front research fields. In general, distribution of optical forces and potential wells exerted on the particles can be modulated by controlling the geometric parameters of the structures. However, these fabricated structures are irreversible once processed, which greatly limits its application in dynamic manipulation. The plasmonic field in these structures can be enhanced with orders of magnitude compared to the excitation light, offering a possibility to stimulate nonlinear responses as a new degree of freedom for dynamic modulation. Here, we theoretically demonstrate that the optical force and potential well can be modulated on account of the nonlinear Kerr effect of a gold bowtie structure under a pulsed laser with high peak power. The results verify that the trapping states, including the position, width, and depth of the potential well, can be dynamically modulated by changing intensity of the incident laser. It provides an effective approach for stable trapping and dynamic controlling of particles on nanostructure-based plasmonic trapping platforms and thus has great application potential in many fields, such as enhanced Raman detection, super-resolution imaging, and optical sensing.
Collapse
|
9
|
Hoshina M, Yokoshi N, Ishihara H. Nanoscale rotational optical manipulation. OPTICS EXPRESS 2020; 28:14980-14994. [PMID: 32403530 DOI: 10.1364/oe.393379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Light has momentum, and hence, it can move small particles. The optical tweezer, invented by Ashkin et al. [Opt. Lett. 11, 288 (1986)] is a representative application. It traps and manipulates microparticles and has led to great successes in the biosciences. Currently, optical manipulation of "nano-objects" is attracting growing attention, and new techniques have been proposed and realized. For flexible manipulation, push-pull switching [Phys. Rev. Lett. 109, 087402 (2012)] and super-resolution trapping by using the electronic resonance of nano-objects have been proposed [ACS Photonics 5, 318 (2017)]. However, regarding the "rotational operation" of nano-objects, the full potential of optical manipulation remains unknown. This study proposes mechanisms to realize rotation and direction switching of nano-objects in macroscopic and nanoscopic areas. By controlling the balance between the dissipative force and the gradient force by using optical nonlinearity, the direction of the macroscopic rotational motion of nano-objects is switched. Further, conversion between the spin angular momentum and orbital angular momentum by light scattering through localized surface plasmon resonance in metallic nano-complexes induces optical force for rotational motion in the nanoscale area. This study pieces out fundamental operations of the nanoscale optical manipulation of nanoparticles.
Collapse
|