1
|
Li Y, Zhang C, Huang T, Fan Y, Ning G, Liao H. Computational multi-angle optical coherence tomography using implicit neural representation. OPTICS & LASER TECHNOLOGY 2025; 184:112551. [DOI: 10.1016/j.optlastec.2025.112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
2
|
Dey R, Alexandrov S, Owens P, Kelly J, Phelan S, Leahy M. Skin cancer margin detection using nanosensitive optical coherence tomography and a comparative study with confocal microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5654-5666. [PMID: 36733740 PMCID: PMC9872867 DOI: 10.1364/boe.474334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 05/08/2023]
Abstract
Excision biopsy and histology represent the gold standard for morphological investigation of the skin, in particular for cancer diagnostics. Nevertheless, a biopsy may alter the original morphology, usually requires several weeks for results, is non-repeatable on the same site and always requires an iatrogenic trauma. Hence, diagnosis and clinical management of diseases may be substantially improved by new non-invasive imaging techniques. Optical Coherence Tomography (OCT) is a non-invasive depth-resolved optical imaging modality based on low coherence interferometry that enables high-resolution, cross-sectional imaging in biological tissues and it can be used to obtain both structural and functional information. Beyond the resolution limit, it is not possible to detect structural and functional information using conventional OCT. In this paper, we present a recently developed technique, nanosensitive OCT (nsOCT), improved using broadband supercontinuum laser, and demonstrate nanoscale sensitivity to structural changes within ex vivo human skin tissue. The extended spectral bandwidth permitted access to a wider distribution of spatial frequencies and improved the dynamic range of the nsOCT. Firstly, we demonstrate numerical and experimental detection of a few nanometers structural difference using the nsOCT method from single B-scan images of phantoms with sub-micron periodic structures, acting like Bragg gratings, along the depth. Secondly, our study shows that nsOCT can distinguish nanoscale structural changes at the skin cancer margin from the healthy region in en face images at clinically relevant depths. Finally, we compare the nsOCT en face image with a high-resolution confocal microscopy image to confirm the structural differences between the healthy and lesional/cancerous regions, allowing the detection of the skin cancer margin.
Collapse
Affiliation(s)
- Rajib Dey
- Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophotonics and Imaging Platform School of Physics, National University of Ireland, Galway, Galway, Ireland
| | - Sergey Alexandrov
- Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophotonics and Imaging Platform School of Physics, National University of Ireland, Galway, Galway, Ireland
| | - Peter Owens
- Center for Microscopy and Imaging, National University of Ireland, Galway, Galway, Ireland
| | - Jack Kelly
- Plastic and Reconstructive Surgery, Galway University Hospital, Galway, Ireland
| | - Sine Phelan
- Department of Anatomic Pathology, Galway University Hospital and Department of Pathology, National University of Ireland, Galway, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophotonics and Imaging Platform School of Physics, National University of Ireland, Galway, Galway, Ireland
- Institute of Photonic Sciences (ICFO), Barcelona, Spain
| |
Collapse
|
3
|
Zhou KC, McNabb RP, Qian R, Degan S, Dhalla AH, Farsiu S, Izatt JA. Computational 3D microscopy with optical coherence refraction tomography. OPTICA 2022; 9:593-601. [PMID: 37719785 PMCID: PMC10503686 DOI: 10.1364/optica.454860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 09/19/2023]
Abstract
Optical coherence tomography (OCT) has seen widespread success as an in vivo clinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT which synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to ±75° without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.
Collapse
Affiliation(s)
- Kevin C. Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ryan P. McNabb
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ruobing Qian
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Simone Degan
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Al-Hafeez Dhalla
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022; 23:ijms23063038. [PMID: 35328454 PMCID: PMC8949853 DOI: 10.3390/ijms23063038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images. A range of relevant approaches has been reported already. In this article, we review the recent advances of molecular contrast OCT imaging techniques, the corresponding contrast agents, especially the nanoparticle-based ones, and their applications. We also summarize the properties, design criteria, merit, and demerit of those contrast agents. In the end, the prospects and challenges for further research and development in this field are outlined.
Collapse
|
5
|
Huang Y, Qiao Z, Chen J, Zhang D, Hao Q. Full-range optical coherence refraction tomography. OPTICS LETTERS 2022; 47:894-897. [PMID: 35167552 DOI: 10.1364/ol.445716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In full-range optical coherence tomography (FROCT), the axial resolution is often superior to the lateral resolution, which is degraded by its signal processing and presents nonuniformity at different imaging depths due to the defocus effect. Optical coherence refraction tomography (OCRT) uses images from multiple angles to computationally reconstruct an image with isotropic resolution, solving the problem of image resolution anisotropy in the sub-millimeter imaging depth range. In this work, we report full-range OCRT (FROCRT), which uses full-range complex conjugate-free optical coherence tomography (OCT) images from multiple angles to reconstruct an isotropic spatial resolution image with extended imaging range. We build a system that can automatically acquire images from 360° for reconstruction. We further apply FROCRT to tape phantom, optical-cleared mouse leg bone and spinal cord samples, and aloe sample, achieving extended imaging depth and isotropic resolution. We propose FROCRT, as an extension to OCRT, will enable broader applications.
Collapse
|