1
|
Wang L, Fu R, Xu C, Xu M. Methods and applications of full-field optical coherence tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220007VR. [PMID: 35596250 PMCID: PMC9122094 DOI: 10.1117/1.jbo.27.5.050901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 05/24/2023]
Abstract
SIGNIFICANCE Full-field optical coherence tomography (FF-OCT) enables en face views of scattering samples at a given depth with subcellular resolution, similar to biopsy without the need of sample slicing or other complex preparation. This noninvasive, high-resolution, three-dimensional (3D) imaging method has the potential to become a powerful tool in biomedical research, clinical applications, and other microscopic detection. AIM Our review provides an overview of the disruptive innovations and key technologies to further improve FF-OCT performance, promoting FF-OCT technology in biomedical and other application scenarios. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. Methods to improve performance of FF-OCT systems are reviewed, including advanced phase-shift approaches for imaging speed improvement, methods of denoising, artifact reduction, and aberration correction for imaging quality optimization, innovations for imaging flux expansion (field-of-view enlargement and imaging-depth-limit extension), new implementations for multimodality systems, and deep learning enhanced FF-OCT for information mining, etc. Finally, we summarize the application status and prospects of FF-OCT in the fields of biomedicine, materials science, security, and identification. RESULTS The most worth-expecting FF-OCT innovations include combining the technique of spatial modulation of optical field and computational optical imaging technology to obtain greater penetration depth, as well as exploiting endogenous contrast for functional imaging, e.g., dynamic FF-OCT, which enables noninvasive visualization of tissue dynamic properties or intracellular motility. Different dynamic imaging algorithms are compared using the same OCT data of the colorectal cancer organoid, which helps to understand the disadvantages and advantages of each. In addition, deep learning enhanced FF-OCT provides more valuable characteristic information, which is of great significance for auxiliary diagnosis and organoid detection. CONCLUSIONS FF-OCT has not been completely exploited and has substantial growth potential. By elaborating the key technologies, performance optimization methods, and application status of FF-OCT, we expect to accelerate the development of FF-OCT in both academic and industry fields. This renewed perspective on FF-OCT may also serve as a road map for future development of invasive 3D super-resolution imaging techniques to solve the problems of microscopic visualization detection.
Collapse
Affiliation(s)
- Ling Wang
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| | - Rongzhen Fu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Chen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Mingen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Bernstein L, Ramier A, Wu J, Aiello VD, Béland MJ, Lin CP, Yun SH. Ultrahigh resolution spectral-domain optical coherence tomography using the 1000-1600 nm spectral band. BIOMEDICAL OPTICS EXPRESS 2022; 13:1939-1947. [PMID: 35519264 PMCID: PMC9045918 DOI: 10.1364/boe.443654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/10/2023]
Abstract
Ultrahigh resolution optical coherence tomography (UHR-OCT) can image microscopic features that are not visible with the standard OCT resolution of 5-15 µm. In previous studies, high-speed UHR-OCT has been accomplished within the visible (VIS) and near-infrared (NIR-I) spectral ranges, specifically within 550-950 nm. Here, we present a spectral domain UHR-OCT system operating in a short-wavelength infrared (SWIR) range from 1000 to 1600 nm using a supercontinuum light source and an InGaAs-based spectrometer. We obtained an axial resolution of 2.6 µm in air, the highest ever recorded in the SWIR window to our knowledge, with deeper penetration into tissues than VIS or NIR-I light. We demonstrate imaging of conduction fibers of the left bundle branch in freshly excised porcine hearts. These results suggest a potential for deep-penetration, ultrahigh resolution OCT in intraoperative applications.
Collapse
Affiliation(s)
- Liane Bernstein
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Antoine Ramier
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiamin Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Department of Automation, Tsinghua University, Beijing 100084, China
- Institute for Brain and Cognitive Science, Tsinghua University, Beijing 100084, China
| | - Vera D. Aiello
- Laboratory of Pathology, Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Marie J. Béland
- Division of Pediatric Cardiology, The Montreal Children’s Hospital of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Charles P. Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Lin SE, Jheng DY, Hsu KY, Liu YR, Huang WH, Lee HC, Tsai CC. Rapid pseudo-H&E imaging using a fluorescence-inbuilt optical coherence microscopic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:5139-5158. [PMID: 34513247 PMCID: PMC8407814 DOI: 10.1364/boe.431586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A technique using Linnik-based optical coherence microscopy (OCM), with built-in fluorescence microscopy (FM), is demonstrated here to describe cellular-level morphology for fresh porcine and biobank tissue specimens. The proposed method utilizes color-coding to generate digital pseudo-H&E (p-H&E) images. Using the same camera, colocalized FM images are merged with corresponding morphological OCM images using a 24-bit RGB composition process to generate position-matched p-H&E images. From receipt of dissected fresh tissue piece to generation of stitched images, the total processing time is <15 min for a 1-cm2 specimen, which is on average two times faster than frozen-section H&E process for fatty or water-rich fresh tissue specimens. This technique was successfully used to scan human and animal fresh tissue pieces, demonstrating its applicability for both biobank and veterinary purposes. We provide an in-depth comparison between p-H&E and human frozen-section H&E images acquired from the same metastatic sentinel lymph node slice (∼10 µm thick), and show the differences, like elastic fibers of a tiny blood vessel and cytoplasm of tumor cells. This optical sectioning technique provides histopathologists with a convenient assessment method that outputs large-field H&E-like images of fresh tissue pieces without requiring any physical embedment.
Collapse
Affiliation(s)
- Sey-En Lin
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
- Department of Anatomic Pathology, New Taipei Municipal Tucheng Hospital (Built and operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Dong-Yo Jheng
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Kuang-Yu Hsu
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Chung Tsai
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| |
Collapse
|
4
|
Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:6390-6407. [PMID: 31853406 PMCID: PMC6913414 DOI: 10.1364/boe.10.006390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 05/05/2023]
Abstract
Fourier-domain full-field optical coherence tomography (FD-FF-OCT) is currently the fastest volumetric imaging technique that is able to generate a single 3-D volume of retina in less than 9 ms, corresponding to a voxel rate of 7.8 GHz. FD-FF-OCT is based on a fast camera, a rapidly tunable laser source, and Fourier-domain signal detection. However, crosstalk appearing due to multiply scattered light corrupts images with the speckle pattern, and therefore, lowers image quality. Here, for the first time, we report on a system that can acquire essentially crosstalk-free volumes of the retina by using a fast deformable membrane. It enables the visualization of choroids and a clear delineation of the retinal layers that is not possible with conventional FD-FF-OCT.
Collapse
|
5
|
Ogien J, Dubois A. A compact high-speed full-field optical coherence microscope for high-resolution in vivo skin imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800208. [PMID: 30062826 DOI: 10.1002/jbio.201800208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/27/2018] [Indexed: 05/06/2023]
Abstract
A compact high-speed full-field optical coherence microscope has been developed for high-resolution in vivo imaging of biological tissues. The interferometer, in the Linnik configuration, has a size of 11 × 11 × 5 cm3 and a weight of 210 g. Full-field illumination with low-coherence light is achieved with a high-brightness broadband light-emitting diode. High-speed full-field detection is achieved by using part of the image sensor of a high-dynamic range CMOS camera. En face tomographic images are acquired at a rate of 50 Hz, with an integration time of 0.9 ms. The image spatial resolution is 0.9 μm × 1.2 μm (axial × transverse), over a field of view of 245 × 245 μm2 . Images of human skin, revealing in-depth cellular-level structures, were obtained in vivo and in real-time without the need for stabilization of the subject. The system can image larger fields, up to 1 × 1 mm2 , but at a reduced depth.
Collapse
Affiliation(s)
- Jonas Ogien
- Laboratoire Charles Fabry, CNRS UMR 8501, Institut d'Optique Graduate School, University of Paris-Saclay, Paris, France
| | - Arnaud Dubois
- Laboratoire Charles Fabry, CNRS UMR 8501, Institut d'Optique Graduate School, University of Paris-Saclay, Paris, France
| |
Collapse
|
6
|
Gao W, Wu X. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues. J Microsc 2017; 268:119-128. [PMID: 28600827 DOI: 10.1111/jmi.12592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
Abstract
It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications.
Collapse
Affiliation(s)
- W Gao
- Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, P. R. China
| | - X Wu
- Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
7
|
Dubois A. Focus defect and dispersion mismatch in full-field optical coherence microscopy. APPLIED OPTICS 2017; 56:D142-D150. [PMID: 28375370 DOI: 10.1364/ao.56.00d142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Full-field optical coherence microscopy (FFOCM) is an optical technique, based on low-coherence interference microscopy, for tomographic imaging of semi-transparent samples with micrometer-scale spatial resolution. The differences in refractive index between the sample and the immersion medium of the microscope objectives may degrade the FFOCM image quality because of focus defect and optical dispersion mismatch. These phenomena and their consequences are discussed in this theoretical paper. Experimental methods that have been implemented in FFOCM to minimize the adverse effects of these phenomena are summarized and compared.
Collapse
|
8
|
Ogien J, Dubois A. High-resolution full-field optical coherence microscopy using a broadband light-emitting diode. OPTICS EXPRESS 2016; 24:9922-31. [PMID: 27137603 DOI: 10.1364/oe.24.009922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High-resolution full-field optical coherence microscopy (FF-OCM) is demonstrated using a single broadband light-emitting diode (LED). The characteristics of the LED-illumination FF-OCM system are measured and compared to those obtained using a halogen lamp, the light source of reference in FF-OCM. Both light sources yield identical performance in terms of spatial resolution and detection sensitivity, using the same setup and camera. In particular, an axial resolution of 0.7 μm (in water) is reached. A Xenopus laevis tadpole and ex-vivo human skin have been imaged using both sources, resulting in similar images, showing for the first time that LEDs could favorably replace halogen lamps in high-resolution FF-OCM for biomedical imaging.
Collapse
|