1
|
Daghrery A, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Unveiling the potential of melt electrowriting in regenerative dental medicine. Acta Biomater 2023; 156:88-109. [PMID: 35026478 PMCID: PMC11046422 DOI: 10.1016/j.actbio.2022.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
For nearly three decades, tissue engineering strategies have been leveraged to devise effective therapeutics for dental, oral, and craniofacial (DOC) regenerative medicine and treat permanent deformities caused by many debilitating health conditions. In this regard, additive manufacturing (AM) allows the fabrication of personalized scaffolds that have the potential to recapitulate native tissue morphology and biomechanics through the utilization of several 3D printing techniques. Among these, melt electrowriting (MEW) is a versatile direct electrowriting process that permits the development of well-organized fibrous constructs with fiber resolutions ranging from micron to nanoscale. Indeed, MEW offers great prospects for the fabrication of scaffolds mimicking tissue specificity, healthy and pathophysiological microenvironments, personalized multi-scale transitions, and functional interfaces for tissue regeneration in medicine and dentistry. Excitingly, recent work has demonstrated the potential of converging MEW with other AM technologies and/or cell-laden scaffold fabrication (bioprinting) as a favorable route to overcome some of the limitations of MEW for DOC tissue regeneration. In particular, such convergency fabrication strategy has opened great promise in terms of supporting multi-tissue compartmentalization and predetermined cell commitment. In this review, we offer a critical appraisal on the latest advances in MEW and its convergence with other biofabrication technologies for DOC tissue regeneration. We first present the engineering principles of MEW and the most relevant design aspects for transition from flat to more anatomically relevant 3D structures while printing highly-ordered constructs. Secondly, we provide a thorough assessment of contemporary achievements using MEW scaffolds to study and guide soft and hard tissue regeneration, and draw a parallel on how to extrapolate proven concepts for applications in DOC tissue regeneration. Finally, we offer a combined engineering/clinical perspective on the fabrication of hierarchically organized MEW scaffold architectures and the future translational potential of site-specific, single-step scaffold fabrication to address tissue and tissue interfaces in dental, oral, and craniofacial regenerative medicine. STATEMENT OF SIGNIFICANCE: Melt electrowriting (MEW) techniques can further replicate the complexity of native tissues and could be the foundation for novel personalized (defect-specific) and tissue-specific clinical approaches in regenerative dental medicine. This work presents a unique perspective on how MEW has been translated towards the application of highly-ordered personalized multi-scale and functional interfaces for tissue regeneration, targeting the transition from flat to anatomically-relevant three-dimensional structures. Furthermore, we address the value of convergence of biofabrication technologies to overcome the traditional manufacturing limitations provided by multi-tissue complexity. Taken together, this work offers abundant engineering and clinical perspectives on the fabrication of hierarchically MEW architectures aiming towards site-specific implants to address complex tissue damage in regenerative dental medicine.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States; Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Isaac J de Souza Araújo
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Miguel Castilho
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Marco C Bottino
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States.
| |
Collapse
|
2
|
Double crosslinked biomimetic composite hydrogels containing topographical cues and WAY-316606 induce neural tissue regeneration and functional recovery after spinal cord injury. Bioact Mater 2022; 24:331-345. [PMID: 36632504 PMCID: PMC9816912 DOI: 10.1016/j.bioactmat.2022.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling condition, for which increasing forms of multifunctional biomaterials are being tested, but with limited progression. The promising material should be able to fill SCI-induced cavities and direct the growth of new neurons, with effective drug loading to improve the local micro-organism environment and promote neural tissue regeneration. In this study, a double crosslinked biomimetic composite hydrogel comprised of acellularized spinal cord matrix (ASCM) and gelatin-acrylated-β-cyclodextrin-polyethene glycol diacrylate (designated G-CD-PEGDA) hydrogel, loaded with WAY-316606 to activate canonical Wnt/β-catenin signaling, and reinforced by a bundle of three-dimensionally printed aligned polycaprolactone (PCL) microfibers, was constructed. The G-CD-PEGDA component endowed the composite hydrogel with a dynamic structure with a self-healing capability which enabled cell migration, while the ASCM component promoted neural cell affinity and proliferation. The diffusion of WAY-316606 could recruit endogenous neural stem cells and improve neuronal differentiation. The aligned PCL microfibers guided neurite elongation in the longitudinal direction. Animal behavior studies further showed that the composite hydrogel could significantly recover the motor function of rats after SCI. This study provides a proficient approach to produce a multifunctional system with desirable physiological, chemical, and topographical cues for treating patients with SCI.
Collapse
|
3
|
Bakirci E, Frank A, Gumbel S, Otto PF, Fürsattel E, Tessmer I, Schmidt H, Dalton PD. Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ezgi Bakirci
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer (BPI) Institute University Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Andreas Frank
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Simon Gumbel
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Paul F. Otto
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer (BPI) Institute University Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Eva Fürsattel
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Ingrid Tessmer
- Rudolf‐Virchow Center for Integrative and Translational Bioimaging University of Würzburg Josef‐Schneider‐Straße 2 Würzburg 97080 Germany
| | - Hans‐Werner Schmidt
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Paul D. Dalton
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer (BPI) Institute University Würzburg Pleicherwall 2 Würzburg 97070 Germany
- Phil and Penny Knight Campus to Accelerate Scientific Impact University of Oregon 1505 Franklin Blvd Eugene OR 90403 USA
| |
Collapse
|
4
|
Vermue IJM, Begum R, Castilho M, Rookmaaker MB, Masereeuw R, Bouten CVC, Verhaar MC, Cheng C. Renal Biology Driven Macro- and Microscale Design Strategies for Creating an Artificial Proximal Tubule Using Fiber-Based Technologies. ACS Biomater Sci Eng 2021; 7:4679-4693. [PMID: 34490771 PMCID: PMC8512683 DOI: 10.1021/acsbiomaterials.1c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Chronic kidney disease
affects one in six people worldwide. Due
to the scarcity of donor kidneys and the complications associated
with hemodialysis (HD), a cell-based bioartificial kidney (BAK) device
is desired. One of the shortcomings of HD is the lack of active transport
of solutes that would normally be performed by membrane transporters
in kidney epithelial cells. Specifically, proximal tubule (PT) epithelial
cells play a major role in the active transport of metabolic waste
products. Therefore, a BAK containing an artificial PT to actively
transport solutes between the blood and the filtrate could provide
major therapeutic advances. Creating such an artificial PT requires
a biocompatible tubular structure which supports the adhesion and
function of PT-specific epithelial cells. Ideally, this scaffold should
structurally replicate the natural PT basement membrane which consists
mainly of collagen fibers. Fiber-based technologies such as electrospinning
are therefore especially promising for PT scaffold manufacturing.
This review discusses the use of electrospinning technologies to generate
an artificial PT scaffold for ex vivo/in
vivo cellularization. We offer a comparison of currently
available electrospinning technologies and outline the desired scaffold
properties required to serve as a PT scaffold. Discussed also are
the potential technologies that may converge in the future, enabling
the effective and biomimetic incorporation of synthetic PTs in to
BAK devices and beyond.
Collapse
Affiliation(s)
- IJsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Runa Begum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
5
|
Xie T, Liu Q, Xue G, Zhang Y, Zhou J, Zhu Z, Gou X. Experimental-numerical analysis of cell adhesion-mediated electromechanical stimulation on piezoelectric nanofiber scaffolds. J Biomech 2021; 129:110777. [PMID: 34601217 DOI: 10.1016/j.jbiomech.2021.110777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
Electrospun nanofibers exhibiting piezoelectricity are a specific class of smart materials which could provide electric stimulation to cells in a noninvasive way and contribute to tissue regeneration. During cell-material interaction, the materials display electromechanical behavior by transforming cell adhesion force into surface charge. In the process, how the cell adhesion states and the electromechanical properties of scaffolds determine the actual piezoelectric potential implemented on a cell is still unclear. Herein, we fabricated piezoelectric poly(vinylidene fluoride) (PVDF) nanofiber scaffolds with different topographies, and investigated their influences on cell morphology and cell adhesion-mediated electromechanical stimulation of mesenchymal stem cell (MSC). Our results demonstrated that MSC seeded on aligned piezoelectric nanofibers exhibited elongated morphology combined with higher intracellular calcium activity than those adhered on random nanofibers with rounded shape. The underlying mechanism was further quantitatively analyzed using a three-dimensional (3D) finite element method with respect to cell adhesion states and architecture parameters of nanofiber scaffolds. The results suggested that cell morphology and cell adhesion force influenced the piezoelectric output through modulating the location and magnification of force implemented on the scaffolds. In addition, the change of alignment, pore size and diameter of the nanofiber network could alter the mechanical property of the scaffolds, and then bias the actual piezoelectric output experienced by a cell. These findings provide new insights for probing the mechanism of cell self-stimulation on piezoelectric scaffolds, and pave the way for rational design of piezoelectric scaffolds for cell regulation and tissue regeneration.
Collapse
Affiliation(s)
- Tianpeng Xie
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Qingjie Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Guilan Xue
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Yimeng Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Junyu Zhou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Zixin Zhu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Xue Gou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China.
| |
Collapse
|
6
|
Ruihan X, Weijie B, Zhihai W, Yaohong W. Start-up stage with improved resolution for an electric field-assisted fused deposition. RSC Adv 2021; 11:7397-7404. [PMID: 35423235 PMCID: PMC8694952 DOI: 10.1039/d0ra07795j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/29/2021] [Indexed: 11/29/2022] Open
Abstract
Electric field-assisted fused deposition modeling (E-FDM) is a promising technique in the field of 3D printing. This paper studies the start-up stage of the printing, which is a process of liquid gradually deforming and making an initial contact with the substrate under the action of electric stress. Polycaprolactone, a popular material for biomedicine, is selected as the printing material. With a home-built E-FDM system, the nozzle-to-substrate distance and the nozzle and substrate temperatures are all held steady. With a photography system, the process of meniscus deformation is recorded. And by image processing methods, the meniscus length and the volume of liquid at the nozzle can be obtained. At a set of initial liquid volumes (V i), nozzle voltage is ramped to a fixed value at a fixed rate. The effects of V i on the meniscus deformation during the start-up stage of the printing are examined. For sufficiently small V i, the meniscus deforms into a conical (Taylor cone) shape, and a fine jet with a diameter much smaller than the nozzle diameter appears. For sufficiently large V i, the meniscus exhibits a spindle shape when it touches the substrate. At an intermediate V i, a Taylor cone is formed, tending to eject a fine jet. After a short period of stagnation or even a slight retraction, no liquid is emitted. Through this study, it is suggested that for high-resolution printing, ramping the voltage at small V i may be preferable. This proposition is preliminarily confirmed in a direct writing test.
Collapse
Affiliation(s)
- Xu Ruihan
- Faculty of Information, Beijing University of Technology Beijing 100124 China
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology Beijing 100124 China
| | - Bao Weijie
- Faculty of Information, Beijing University of Technology Beijing 100124 China
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology Beijing 100124 China
| | - Wang Zhihai
- Faculty of Information, Beijing University of Technology Beijing 100124 China
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology Beijing 100124 China
| | - Wang Yaohong
- Center for Applied Mathematics, Tianjin University Tianjin 300072 China
| |
Collapse
|
7
|
Chen X, Lin X, Mo D, Xia X, Gong M, Lian H, Luo Y. High-sensitivity, fast-response flexible pressure sensor for electronic skin using direct writing printing. RSC Adv 2020; 10:26188-26196. [PMID: 35519730 PMCID: PMC9055341 DOI: 10.1039/d0ra04431h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Bionic electronic skin with human sensory capabilities has attracted extensive research interest, which has been applied in the fields of medical health diagnosis, wearable electronics, human–computer interaction, and bionic prosthetics. Electronic skin tactile pressure sensing required high sensitivity, good resolution and fast response for sensing different pressure stimuli. In particular, there were still great challenges in the detection of wide pressure and the preparation of sensitive unit microstructures. Here, the direct-write printing of Weissenberg principle to fabricate GNPs/MWCNT filled conductive composite flexible pressure sensors on PDMS substrates was proposed. The effects of platform moving speed, microneedle rotation speed and the number of direct-write times on the line width of the pressure sensitive structure were investigated based on orthogonal experiments, and the optimal direct-write printing parameters were obtained. The performance of the S-shaped polyline pressure sensor was tested, in which the sensitivity could reached 0.164 kPa−1, and the response/recovery time was 100 ms and 100 ms respectively. The capture cases of objects of different quality and objects with flat/curved surfaces were successively demonstrated to exhibit its excellent sensitivity, stability and fast response performance. This work may paved the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions. Bionic electronic skin with human sensory capabilities has attracted extensive research interest, which has been applied in the fields of medical health diagnosis, wearable electronics, human–computer interaction, and bionic prosthetics.![]()
Collapse
Affiliation(s)
- Xiaojun Chen
- School of Mechanical and Electronic Engineering, Lingnan Normal University Zhanjiang 524048 China
| | - Xitong Lin
- School of Mechanical and Electronic Engineering, Lingnan Normal University Zhanjiang 524048 China
| | - Deyun Mo
- School of Mechanical and Electronic Engineering, Lingnan Normal University Zhanjiang 524048 China
| | - Xiaoqun Xia
- School of Mechanical and Electronic Engineering, Lingnan Normal University Zhanjiang 524048 China
| | - Manfeng Gong
- School of Mechanical and Electronic Engineering, Lingnan Normal University Zhanjiang 524048 China
| | - Haishan Lian
- School of Mechanical and Electronic Engineering, Lingnan Normal University Zhanjiang 524048 China
| | - Yihui Luo
- Department of Mechanical & Electrical Engineering, Xiamen University 361102 China
| |
Collapse
|
8
|
Kristen M, Ainsworth MJ. Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Adv Healthc Mater 2020; 9:e1900775. [PMID: 31603288 PMCID: PMC7116178 DOI: 10.1002/adhm.201900775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.
Collapse
Affiliation(s)
- Marleen Kristen
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Madison J. Ainsworth
- Regenerative Medicine Center, University Medical Center Utrecht,
Utrecht 3584 CT, The Netherlands; Department of Orthopedics, University Medical
Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
9
|
Peng Z, Gou N, Wei Z, Zhao J, Wang F, Yang J, Li Y, Lan H. Fabrication of a Large-Area, Fused Polymer Micromold Based on Electric-Field-Driven (EFD) μ-3D Printing. Polymers (Basel) 2019; 11:polym11111902. [PMID: 31752165 PMCID: PMC6918298 DOI: 10.3390/polym11111902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
An electric-field-driven (EFD), μ-3D printed, fused polymer technique has been developed for the fabrication of large-area microscale prototype molds using typical polymer materials, including microcrystalline wax (MC-wax), polycaprolactone (PCL), and polymathic methacrylate (PMMA). This work proposes an alternative for large area microscale modes and overcomes the limitation of high cost in the traditional mold manufacturing industry. The EFD principle enables printing of fused polymers materials more than one order of magnitude lower than the nozzle diameter, contributing to the necking effect of the Taylor cone jet, which is the key factor to achieve the microscale manufacturing. Numerical simulation of electric field distribution between the meniscus and substrate was carried out to elucidate the dependence of electric field distribution on the meniscus condition of three types of polymers under printable voltage, and the electrical field parameters for the EFD μ-3D printing were determined. A number of experiments were printed successfully using a large range of viscosity materials, ranging from tens of mPa·s to hundreds of thousands of mPa·s of PCL and PMMA. The differences in parameters of different materials, such as viscosity, tensile properties, and surface energy, were studied to assess their use in different fields. Using proper process parameters and a nozzle with an inner diameter of 200 μm, three different application cases were completed, including a Wax microarray and microchannel with a minimum dot diameter of 20 μm, a PCL mesh structure with a minimum line width of 5 μm, and a PMMA large-area mold with a maximum aspect ratio of 0.8. Results show that the EFD μ-3D printing has the outstanding advantages of high printing resolution and polymer material universality.
Collapse
|
10
|
McMaster R, Hoefner C, Hrynevich A, Blum C, Wiesner M, Wittmann K, Dargaville TR, Bauer‐Kreisel P, Groll J, Dalton PD, Blunk T. Tailored Melt Electrowritten Scaffolds for the Generation of Sheet-Like Tissue Constructs from Multicellular Spheroids. Adv Healthc Mater 2019; 8:e1801326. [PMID: 30835969 DOI: 10.1002/adhm.201801326] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Indexed: 12/14/2022]
Abstract
Melt electrowriting (MEW) is an additive manufacturing technology that is recently used to fabricate voluminous scaffolds for biomedical applications. In this study, MEW is adapted for the seeding of multicellular spheroids, which permits the easy handling as a single sheet-like tissue-scaffold construct. Spheroids are made from adipose-derived stromal cells (ASCs). Poly(ε-caprolactone) is processed via MEW into scaffolds with box-structured pores, readily tailorable to spheroid size, using 13-15 µm diameter fibers. Two 7-8 µm diameter "catching fibers" near the bottom of the scaffold are threaded through each pore (360 and 380 µm) to prevent loss of spheroids during seeding. Cell viability remains high during the two week culture period, while the differentiation of ASCs into the adipogenic lineage is induced. Subsequent sectioning and staining of the spheroid-scaffold construct can be readily performed and accumulated lipid droplets are observed, while upregulation of molecular markers associated with successful differentiation is demonstrated. Tailoring MEW scaffolds with pores allows the simultaneous seeding of high numbers of spheroids at a time into a construct that can be handled in culture and may be readily transferred to other sites for use as implants or tissue models.
Collapse
Affiliation(s)
- Rebecca McMaster
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Wuerzburg Oberduerrbacher Str. 6 97080 Wuerzburg Germany
- Institute of Health and Biomedical InnovationQueensland University of Technology 60 Musk Ave Kelvin Grove 4059 Australia
| | - Christiane Hoefner
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Wuerzburg Oberduerrbacher Str. 6 97080 Wuerzburg Germany
| | - Andrei Hrynevich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Wuerzburg Pleicherwall 2 97070 Wuerzburg Germany
| | - Carina Blum
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Wuerzburg Pleicherwall 2 97070 Wuerzburg Germany
| | - Miriam Wiesner
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Wuerzburg Oberduerrbacher Str. 6 97080 Wuerzburg Germany
| | - Katharina Wittmann
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Wuerzburg Pleicherwall 2 97070 Wuerzburg Germany
| | - Tim R. Dargaville
- Institute of Health and Biomedical InnovationQueensland University of Technology 60 Musk Ave Kelvin Grove 4059 Australia
| | - Petra Bauer‐Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Wuerzburg Oberduerrbacher Str. 6 97080 Wuerzburg Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Wuerzburg Pleicherwall 2 97070 Wuerzburg Germany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Wuerzburg Pleicherwall 2 97070 Wuerzburg Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Wuerzburg Oberduerrbacher Str. 6 97080 Wuerzburg Germany
| |
Collapse
|
11
|
Ishii Y. Significant reduction in propagation loss in electrospun polymer fibers by adopting thermal drawing. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|