1
|
Nagli M, Moisseev R, Suleymanov N, Kaminski E, Hazan Y, Gelbert G, Goykhman I, Rosenthal A. Silicon photonic acoustic detector (SPADE) using a silicon nitride microring resonator. PHOTOACOUSTICS 2023; 32:100527. [PMID: 37645254 PMCID: PMC10461202 DOI: 10.1016/j.pacs.2023.100527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
Silicon photonics is an emerging platform for acoustic sensing, offering exceptional miniaturization and sensitivity. While efforts have focused on silicon-based resonators, silicon nitride resonators can potentially achieve higher Q-factors, further enhancing sensitivity. In this work, a 30 µm silicon nitride microring resonator was fabricated and coated with an elastomer to optimize acoustic sensitivity and signal fidelity. The resonator was characterized acoustically, and its capability for optoacoustic tomography was demonstrated. An acoustic bandwidth of 120 MHz and a noise-equivalent pressure of ∼ 7 mPa/Hz1/2 were demonstrated. The spatially dependent impulse response agreed with theoretical predictions, and spurious acoustic signals, such as reverberations and surface acoustic waves, had a marginal impact. High image fidelity optoacoustic tomography of a 20 µm knot was achieved, confirming the detector's imaging capabilities. The results show that silicon nitride offers low signal distortion and high-resolution optoacoustic imaging, proving its versatility for acoustic imaging applications.
Collapse
Affiliation(s)
- Michael Nagli
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ron Moisseev
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Nathan Suleymanov
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Eitan Kaminski
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Yoav Hazan
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Gil Gelbert
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ilya Goykhman
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| |
Collapse
|
2
|
Harary T, Hazan Y, Rosenthal A. All-optical optoacoustic micro-tomography in reflection mode. Biomed Eng Lett 2023; 13:475-483. [PMID: 37519878 PMCID: PMC10382435 DOI: 10.1007/s13534-023-00278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 08/01/2023] Open
Abstract
High-resolution optoacoustic imaging at depths beyond the optical diffusion limit is conventionally performed using a microscopy setup where a strongly focused ultrasound transducer samples the image object point-by-point. Although recent advancements in miniaturized ultrasound detectors enables one to achieve microscopic resolution with an unfocused detector in a tomographic configuration, such an approach requires illuminating the entire object, leading to an inefficient use of the optical power, and imposing a trans-illumination configuration that is limited to thin objects. We developed an optoacoustic micro-tomography system in an epi-illumination configuration, in which the illumination is scanned with the detector. The system is demonstrated in phantoms for imaging depths of up to 5 mm and in vivo for imaging the vasculature of a mouse ear. Although image-formation in optoacoustic tomography generally requires static illumination, our numerical simulations and experimental measurements show that this requirement is relaxed in practice due to light diffusion, which homogenizes the fluence in deep tissue layers.
Collapse
Affiliation(s)
- Tamar Harary
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| | - Yoav Hazan
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
| |
Collapse
|
3
|
Nagli M, Koch J, Hazan Y, Volodarsky O, Ravi Kumar R, Levi A, Hahamovich E, Ternyak O, Overmeyer L, Rosenthal A. Silicon-photonics focused ultrasound detector for minimally invasive optoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:6229-6244. [PMID: 36589589 PMCID: PMC9774880 DOI: 10.1364/boe.470295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 05/28/2023]
Abstract
One of the main challenges in miniaturizing optoacoustic technology is the low sensitivity of sub-millimeter piezoelectric ultrasound transducers, which is often insufficient for detecting weak optoacoustic signals. Optical detectors of ultrasound can achieve significantly higher sensitivities than their piezoelectric counterparts for a given sensing area but generally lack acoustic focusing, which is essential in many minimally invasive imaging configurations. In this work, we develop a focused sub-millimeter ultrasound detector composed of a silicon-photonics optical resonator and a micro-machined acoustic lens. The acoustic lens provides acoustic focusing, which, in addition to increasing the lateral resolution, also enhances the signal. The developed detector has a wide bandwidth of 84 MHz, a focal width smaller than 50 µm, and noise-equivalent pressure of 37 mPa/Hz1/2 - an order of magnitude improvement over conventional intravascular ultrasound. We show the feasibility of the approach and the detector's imaging capabilities by performing high-resolution optoacoustic microscopy of optical phantoms with complex geometries.
Collapse
Affiliation(s)
- Michael Nagli
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Jürgen Koch
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Yoav Hazan
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Oleg Volodarsky
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Resmi Ravi Kumar
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ahiad Levi
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Evgeny Hahamovich
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Orna Ternyak
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
- Micro & Nano Fabrication Unit (MNFU), Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ludger Overmeyer
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Amir Rosenthal
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| |
Collapse
|
4
|
Silicon-photonics acoustic detector for optoacoustic micro-tomography. Nat Commun 2022; 13:1488. [PMID: 35304481 PMCID: PMC8933411 DOI: 10.1038/s41467-022-29179-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Medical ultrasound and optoacoustic (photoacoustic) imaging commonly rely on the concepts of beam-forming and tomography for image formation, enabled by piezoelectric array transducers whose element size is comparable to the desired resolution. However, the tomographic measurement of acoustic signals becomes increasingly impractical for resolutions beyond 100 µm due to the reduced efficiency of piezoelectric elements upon miniaturization. For higher resolutions, a microscopy approach is preferred, in which a single focused ultrasound transducer images the object point-by-point, but the bulky apparatus and long acquisition time of this approach limit clinical applications. In this work, we demonstrate a miniaturized acoustic detector capable of tomographic imaging with spread functions whose width is below 20 µm. The detector is based on an optical resonator fabricated in a silicon-photonics platform coated by a sensitivity-enhancing elastomer, which also effectively eliminates the parasitic effect of surface acoustic waves. The detector is demonstrated in vivo in high-resolution optoacoustic tomography.
Collapse
|
5
|
Hazan Y, Rosenthal A. Simultaneous multi-channel ultrasound detection via phase modulated pulse interferometry. OPTICS EXPRESS 2019; 27:28844-28854. [PMID: 31684629 DOI: 10.1364/oe.27.028844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In optical detection of ultrasound, resonators with high Q-factors are often used to maximize sensitivity. However, in order to perform parallel interrogation, conventional interferometric techniques require an overlap between the spectra of all the resonators, which is difficult to achieve with high Q-factor resonators. In this paper, a new method is developed for parallel interrogation of optical resonators with non-overlapping spectra. The method is based on a phase-modulation scheme for pulse interferometry (PM-PI) and requires only a single photodetector and sampling channel per ultrasound detector. Using PM-PI, parallel ultrasound detection is demonstrated with four high Q-factor resonators.
Collapse
|
6
|
Zhu EY, Rewcastle C, Gad R, Qian L, Levi O. Refractive-index-based ultrasound sensing with photonic crystal slabs. OPTICS LETTERS 2019; 44:2609-2612. [PMID: 31090744 DOI: 10.1364/ol.44.002609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate ultrasound detection with 500-μm-diameter photonic-crystal slab (PCS) sensors fabricated from CMOS-compatible technology. An ultrasound signal impinging a PCS sensor causes a local modulation of the refractive index (RI) of the medium (water) in which the PCS is immersed, resulting in a periodic spectral shift of the optical resonance of the PCS. The acoustic sensitivity is found to scale with the index sensitivity S and quality factor Q. A noise equivalent pressure (NEP) of 650 Pa with averaging (7.4 Pa/Hz) and relative wavelength shifts of up to 4.3×10-5 MPa-1 are measured. The frequency response of the sensors is observed to be flat from 1 to 20 MHz, with the range limited only by our measurement apparatus.
Collapse
|
7
|
Ouyang B, Li Y, Kruidhof M, Horsten R, van Dongen KWA, Caro J. On-chip silicon Mach-Zehnder interferometer sensor for ultrasound detection. OPTICS LETTERS 2019; 44:1928-1931. [PMID: 30985777 DOI: 10.1364/ol.44.001928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
A highly sensitive ultrasound sensor based on an integrated photonics Mach-Zehnder interferometer (MZI) fabricated in silicon-on-insulator technology is reported. The sensing spiral is located on a membrane of size 121 μm×121 μm. Ultrasound waves excite the membrane's vibrational mode, which translates to modulation of the MZI transmission. The measured sensor transfer function is centered at 0.47 MHz and has a -6 dB bandwidth of 21.2%. The sensor sensitivity is linear in the optical input power and reaches a maximum 0.62 mV/Pa, which is limited by the interrogation method. At 0.47 MHz and for an optical power of 1.0 mW the detection limit is 0.38 mPa/Hz1/2 and the dynamic range is 59 dB. The MZI's gradual transmission function allows a wide range of wavelength operation points. This strongly facilitates sensor use and is promising for applications.
Collapse
|
8
|
Wissmeyer G, Pleitez MA, Rosenthal A, Ntziachristos V. Looking at sound: optoacoustics with all-optical ultrasound detection. LIGHT, SCIENCE & APPLICATIONS 2018; 7:53. [PMID: 30839640 PMCID: PMC6107019 DOI: 10.1038/s41377-018-0036-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 05/03/2023]
Abstract
Originally developed for diagnostic ultrasound imaging, piezoelectric transducers are the most widespread technology employed in optoacoustic (photoacoustic) signal detection. However, the detection requirements of optoacoustic sensing and imaging differ from those of conventional ultrasonography and lead to specifications not sufficiently addressed by piezoelectric detectors. Consequently, interest has shifted to utilizing entirely optical methods for measuring optoacoustic waves. All-optical sound detectors yield a higher signal-to-noise ratio per unit area than piezoelectric detectors and feature wide detection bandwidths that may be more appropriate for optoacoustic applications, enabling several biomedical or industrial applications. Additionally, optical sensing of sound is less sensitive to electromagnetic noise, making it appropriate for a greater spectrum of environments. In this review, we categorize different methods of optical ultrasound detection and discuss key technology trends geared towards the development of all-optical optoacoustic systems. We also review application areas that are enabled by all-optical sound detectors, including interventional imaging, non-contact measurements, magnetoacoustics, and non-destructive testing.
Collapse
Affiliation(s)
- Georg Wissmeyer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Miguel A. Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Amir Rosenthal
- Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| |
Collapse
|