1
|
Neidhardt M, Latus S, Eixmann T, Huttmann G, Schlaefer A. Deep Learning for High Speed Optical Coherence Elastography With a Fiber Scanning Endoscope. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1445-1453. [PMID: 40030355 DOI: 10.1109/tmi.2024.3505676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Tissue stiffness is related to soft tissue pathologies and can be assessed through palpation or via clinical imaging systems, e.g., ultrasound or magnetic resonance imaging. Typically, the image based approaches are not suitable during interventions, particularly for minimally invasive surgery. To this end, we present a miniaturized fiber scanning endoscope for fast and localized elastography. Moreover, we propose a deep learning based signal processing pipeline to account for the intricate data and the need for real-time estimates. Our elasticity estimation approach is based on imaging complex and diffuse wave fields that encompass multiple wave frequencies and propagate in various directions. We optimize the probe design to enable different scan patterns. To maximize temporal sampling while maintaining three-dimensional information we define a scan pattern in a conical shape with a temporal frequency of 5.05kHz. To efficiently process the image sequences of complex wave fields we consider a spatio-temporal deep learning network. We train the network in an end-to-end fashion on measurements from phantoms representing multiple elasticities. The network is used to obtain localized and robust elasticity estimates, allowing to create elasticity maps in real-time. For 2D scanning, our approach results in a mean absolute error of 6.31(576)kPa compared to 11.33(1278)kPa for conventional phase tracking. For scanning without estimating the wave direction, the novel 3D method reduces the error to 4.48(363)kPa compared to 19.75(2182)kPa for the conventional 2D method. Finally, we demonstrate feasibility of elasticity estimates in ex-vivo porcine tissue.
Collapse
|
2
|
Jeon J, Kim H, Jang H, Hwang K, Kim K, Park YG, Jeong KH. Handheld laser scanning microscope catheter for real-time and in vivo confocal microscopy using a high definition high frame rate Lissajous MEMS mirror. BIOMEDICAL OPTICS EXPRESS 2022; 13:1497-1505. [PMID: 35414975 PMCID: PMC8973198 DOI: 10.1364/boe.447558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
A handheld confocal microscope using a rapid MEMS scanning mirror facilitates real-time optical biopsy for simple cancer diagnosis. Here we report a handheld confocal microscope catheter using high definition and high frame rate (HDHF) Lissajous scanning MEMS mirror. The broad resonant frequency region of the fast axis on the MEMS mirror with a low Q-factor facilitates the flexible selection of scanning frequencies. HDHF Lissajous scanning was achieved by selecting the scanning frequencies with high greatest common divisor (GCD) and high total lobe number. The MEMS mirror was fully packaged into a handheld configuration, which was coupled to a home-built confocal imaging system. The confocal microscope catheter allows fluorescence imaging of in vivo and ex vivo mouse tissues with 30 Hz frame rate and 95.4% fill factor at 256 × 256 pixels image, where the lateral resolution is 4.35 μm and the field-of-view (FOV) is 330 μm × 330 μm. This compact confocal microscope can provide diverse handheld microscopic applications for real-time, on-demand, and in vivo optical biopsy.
Collapse
Affiliation(s)
- Jaehun Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Hyunwoo Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Hyunwoo Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - Kyuyoung Kim
- VPIX Medical, Inc, Deajeon, 34873, Republic of Korea
| | - Young-Gyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
3
|
Marques MJ, Hughes MR, Uceda AF, Gelikonov G, Bradu A, Podoleanu A. Endoscopic en-face optical coherence tomography and fluorescence imaging using correlation-based probe tracking. BIOMEDICAL OPTICS EXPRESS 2022; 13:761-776. [PMID: 35284172 PMCID: PMC8884237 DOI: 10.1364/boe.444170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/25/2023]
Abstract
Forward-viewing endoscopic optical coherence tomography (OCT) provides 3D imaging in vivo, and can be combined with widefield fluorescence imaging by use of a double-clad fiber. However, it is technically challenging to build a high-performance miniaturized 2D scanning system with a large field-of-view. In this paper we demonstrate how a 1D scanning probe, which produces cross-sectional OCT images (B-scans) and 1D fluorescence T-scans, can be transformed into a 2D scanning probe by manual scanning along the second axis. OCT volumes are assembled from the B-scans using speckle decorrelation measurements to estimate the out-of-plane motion along the manual scan direction. Motion within the plane of the B-scans is corrected using image registration by normalized cross correlation. En-face OCT slices and fluorescence images, corrected for probe motion in 3D, can be displayed in real-time during the scan. For a B-scan frame rate of 250 Hz, and an OCT lateral resolution of approximately 20 μ m , the approach can handle out-of-plane motion at speeds of up to 4 mm/s.
Collapse
Affiliation(s)
- Manuel J. Marques
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
- Both authors contributed equally to this publication
| | - Michael R. Hughes
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
- Both authors contributed equally to this publication
| | - Adrián F. Uceda
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | | | - Adrian Bradu
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Adrian Podoleanu
- Applied Optics Group, Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| |
Collapse
|
4
|
Münter M, Pieper M, Kohlfaerber T, Bodenstorfer E, Ahrens M, Winter C, Huber R, König P, Hüttmann G, Schulz-Hildebrandt H. Microscopic optical coherence tomography (mOCT) at 600 kHz for 4D volumetric imaging and dynamic contrast. BIOMEDICAL OPTICS EXPRESS 2021; 12:6024-6039. [PMID: 34745719 PMCID: PMC8547980 DOI: 10.1364/boe.425001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/11/2023]
Abstract
Volumetric imaging of dynamic processes with microscopic resolution holds a huge potential in biomedical research and clinical diagnosis. Using supercontinuum light sources and high numerical aperture (NA) objectives, optical coherence tomography (OCT) achieves microscopic resolution and is well suited for imaging cellular and subcellular structures of biological tissues. Currently, the imaging speed of microscopic OCT (mOCT) is limited by the line-scan rate of the spectrometer camera and ranges from 30 to 250 kHz. This is not fast enough for volumetric imaging of dynamic processes in vivo and limits endoscopic application. Using a novel CMOS camera, we demonstrate fast 3-dimensional OCT imaging with 600,000 A-scans/s at 1.8 µm axial and 1.1 µm lateral resolution. The improved speed is used for imaging of ciliary motion and particle transport in ex vivo mouse trachea. Furthermore, we demonstrate dynamic contrast OCT by evaluating the recorded volumes rather than en face planes or B-scans. High-speed volumetric mOCT will enable the correction of global tissue motion and is a prerequisite for applying dynamic contrast mOCT in vivo. With further increase in imaging speed and integration in flexible endoscopes, volumetric mOCT may be used to complement or partly replace biopsies.
Collapse
Affiliation(s)
- Michael Münter
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Mario Pieper
- University of
Lübeck, Institute of Anatomy, Ratzeburger Allee 160,
23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | - Tabea Kohlfaerber
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Ernst Bodenstorfer
- Austrian Institute of
Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Martin Ahrens
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | | | - Robert Huber
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Peter König
- University of
Lübeck, Institute of Anatomy, Ratzeburger Allee 160,
23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | - Gereon Hüttmann
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| | - Hinnerk Schulz-Hildebrandt
- University of Lübeck,
Institute of Biomedical Optics,
Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Medizinisches Laserzentrum
Lübeck GmbH, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
- Airway Research Center North
Member of the German Center for Lung Research, DZL,
22927 Großhansdorf, Germany
| |
Collapse
|
5
|
Zhang H, Wang X, Du H, Yu H, Wu J, Meng Y, Qiu Y, Mao B, Zhou P, Li Y. Machine learning enabled self-calibration single fiber endoscopic imaging. OPTICS LETTERS 2021; 46:3673-3676. [PMID: 34329253 DOI: 10.1364/ol.432336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Single fiber scanners (SFSs), with the advantages of compact size, versatility, large field of view, and high resolution, have been applied in many areas. However, image distortions persistently impair the imaging quality of the SFS, although many efforts have been made to address the problem. In this Letter, we propose a simple and complete solution by combining the piezoelectric (PZT) self-induction sensor and machine learning algorithms. The PZT tube was utilized as both the actuator and the fiber position sensor. Additionally, the feedback sensor signal was interrogated by a convolution neural network to eliminate the noise. The experimental results show that the predicted fiber trajectory error was below 0.1%. Moreover, this self-calibration SFS has an excellent robustness to temperature changes (20-50°C). It is believed that the proposed solution has removed the biggest barrier for the SFS and greatly improved its performance and stability in complex environments.
Collapse
|
6
|
Münter M, Vom Endt M, Pieper M, Casper M, Ahrens M, Kohlfaerber T, Rahmanzadeh R, König P, Hüttmann G, Schulz-Hildebrandt H. Dynamic contrast in scanning microscopic OCT. OPTICS LETTERS 2020; 45:4766-4769. [PMID: 32870852 DOI: 10.1364/ol.396134] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/07/2020] [Indexed: 05/18/2023]
Abstract
While optical coherence tomography (OCT) provides a resolution down to 1 µm, it has difficulties in visualizing cellular structures due to a lack of scattering contrast. By evaluating signal fluctuations, a significant contrast enhancement was demonstrated using time-domain full-field OCT (FF-OCT), which makes cellular and subcellular structures visible. The putative cause of the dynamic OCT signal is the site-dependent active motion of cellular structures in a sub-micrometer range, which provides histology-like contrast. Here we demonstrate dynamic contrast with a scanning frequency-domain OCT (FD-OCT), which we believe has crucial advantages. Given the inherent sectional imaging geometry, scanning FD-OCT provides depth-resolved images across tissue layers, a perspective known from histopathology, much faster and more efficiently than FF-OCT. Both shorter acquisition times and tomographic depth-sectioning reduce the sensitivity of dynamic contrast for bulk tissue motion artifacts and simplify their correction in post-processing. Dynamic contrast makes microscopic FD-OCT a promising tool for the histological analysis of unstained tissues.
Collapse
|
7
|
Schlüter M, Glandorf L, Gromniak M, Saathoff T, Schlaefer A. Concept for Markerless 6D Tracking Employing Volumetric Optical Coherence Tomography. SENSORS 2020; 20:s20092678. [PMID: 32397153 PMCID: PMC7248981 DOI: 10.3390/s20092678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022]
Abstract
Optical tracking systems are widely used, for example, to navigate medical interventions. Typically, they require the presence of known geometrical structures, the placement of artificial markers, or a prominent texture on the target’s surface. In this work, we propose a 6D tracking approach employing volumetric optical coherence tomography (OCT) images. OCT has a micrometer-scale resolution and employs near-infrared light to penetrate few millimeters into, for example, tissue. Thereby, it provides sub-surface information which we use to track arbitrary targets, even with poorly structured surfaces, without requiring markers. Our proposed system can shift the OCT’s field-of-view in space and uses an adaptive correlation filter to estimate the motion at multiple locations on the target. This allows one to estimate the target’s position and orientation. We show that our approach is able to track translational motion with root-mean-squared errors below 0.25 mm and in-plane rotations with errors below 0.3°. For out-of-plane rotations, our prototypical system can achieve errors around 0.6°.
Collapse
|
8
|
Wu T, Zhang L, Wang J, Huo W, Lu Y, He C, Liu Y. Miniaturized precalibration-based Lissajous scanning fiber probe for high speed endoscopic optical coherence tomography. OPTICS LETTERS 2020; 45:2470-2473. [PMID: 32287261 DOI: 10.1364/ol.389364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/29/2020] [Indexed: 05/28/2023]
Abstract
We present a miniaturized precalibration-based forward-viewing Lissajous scanning fiber probe for high speed endoscopic optical coherence tomography (OCT). The probe is based on an asymmetric fiber cantilever driven by the piezoelectric bender to realize two-dimensional (2D) Lissajous scanning. The stability and repeatability of the Lissajous scanning trajectory of the probe is tested by a position sensitive detector (PSD)-based position calibration setup. The two orthogonal resonant frequencies of the cantilever are measured to be 167.2 and 121 Hz. A 25 µm focal spot is formed at the working distance of 5 mm by the graded-index (GRIN) lens, and the field of view of the imaging probe is around ${1.5}\;{\rm mm} \times {1.5}\;{\rm mm}$1.5mm×1.5mm. The probe is fully packaged in a hypodermic tube for endoscopic imaging. The total rigid length and outer diameter are 35 mm and 3.5 mm, respectively. The probe is incorporated in a 50 KHz swept source OCT system with the axial resolution of 14 µm, and its imaging performance is validated by the 2D en face and 3D volumetric OCT imaging of the phantom and the biological tissue.
Collapse
|
9
|
Wurster LM, Kretschmer S, Jäger J, Placzek F, Ginner L, Drexler W, Ataman Ç, Leitgeb RA, Zappe H. Comparison of optical coherence tomography angiography and narrow-band imaging using a bimodal endoscope. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-5. [PMID: 31562707 PMCID: PMC7010982 DOI: 10.1117/1.jbo.25.3.032003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/22/2019] [Indexed: 05/03/2023]
Abstract
We present coregistered images of tissue vasculature that allow a direct comparison between the performance of narrow-band imaging (NBI) and optical coherence tomography angiography (OCTA). Images were generated with a bimodal endomicroscope having a size of 15 × 2.4 × 3.3 3 ( l , w , h ) that combines two imaging channels. The white light imaging channel was used to perform NBI, the current gold standard for endoscopic visualization of vessels. The second channel allowed the simultaneous acquisition of optical coherence tomography (OCT) and OCTA images, enabling a three-dimensional (3-D) visualization of morphological as well as functional tissue information. In order to obtain 3-D OCT images scanning of the light-transmitting fiber was implemented by a small piezoelectric tube. A field of view of ∼1.1 mm was achieved for both modalities. Under the assumption that OCTA can address current limitations of NBI, their performance was studied and compared during in vivo experiments. The preliminary results show the potential of OCT regarding an improved visualization and localization of vessel beds, which can be beneficial for diagnosis of pathological conditions.
Collapse
Affiliation(s)
- Lara M. Wurster
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory for Innovative Optical Imaging and Its Translation to Medicine, Vienna, Austria
| | - Simon Kretschmer
- University of Freiburg, Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering, Freiburg, Germany
| | - Jan Jäger
- University of Freiburg, Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering, Freiburg, Germany
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Laurin Ginner
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory for Innovative Optical Imaging and Its Translation to Medicine, Vienna, Austria
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Çağlar Ataman
- University of Freiburg, Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering, Freiburg, Germany
| | - Rainer A. Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory for Innovative Optical Imaging and Its Translation to Medicine, Vienna, Austria
- Address all correspondence to Rainer A. Leitgeb, E-mail:
| | - Hans Zappe
- University of Freiburg, Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering, Freiburg, Germany
| |
Collapse
|
10
|
Park HC, Zhang X, Yuan W, Zhou L, Xie H, Li X. Ultralow-voltage electrothermal MEMS based fiber-optic scanning probe for forward-viewing endoscopic OCT. OPTICS LETTERS 2019; 44:2232-2235. [PMID: 31042191 PMCID: PMC6541216 DOI: 10.1364/ol.44.002232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
We report an ultralow-voltage, electrothermal (ET) micro-electro-mechanical system (MEMS) based probe for forward-viewing endoscopic optical coherence tomography (OCT) imaging. The fully assembled probe has a diameter of 5.5 mm and a length of 55 mm, including the imaging optics and a 40 mm long fiber-optic cantilever attached on a micro-platform of the bimorph ET MEMS actuator. The ET MEMS actuator provides a sufficient mechanical actuation force as well as a large vertical displacement, achieving up to a 3 mm optical scanning range with only a 3 VACp-p drive voltage with a 1.5 VDC offset. The imaging probe was integrated with a swept-source OCT system of a 100 kHz A-scan rate, and its performance was successfully demonstrated with cross-sectional imaging of biological tissues ex vivo and in vivo at a speed up to 200 frames per second.
Collapse
Affiliation(s)
- Hyeon-Cheol Park
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Xiaoyang Zhang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Wu Yuan
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Liang Zhou
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Huikai Xie
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Xingde Li
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
11
|
Wurster LM, Shah RN, Placzek F, Kretschmer S, Niederleithner M, Ginner L, Ensher J, Minneman MP, Hoover EE, Zappe H, Drexler W, Leitgeb RA, Ataman Ç. Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe. JOURNAL OF BIOPHOTONICS 2019; 12:e201800382. [PMID: 30652423 PMCID: PMC7065608 DOI: 10.1002/jbio.201800382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 05/23/2023]
Abstract
A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A-line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer.
Collapse
Affiliation(s)
- Lara M. Wurster
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Ronak N. Shah
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| | - Fabian Placzek
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Simon Kretschmer
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| | - Michael Niederleithner
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Laurin Ginner
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Jason Ensher
- INSIGHT Photonics Solution, Inc.LafayetteColorado
| | | | | | - Hans Zappe
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Çağlar Ataman
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| |
Collapse
|