1
|
Xu G, Cai G, Liang L, Cheng J, Song L, Sun R, Shen F, Liu B, Feng S, Zhang J. Recent Advances in Microfluidics-Based Monitoring of Waterborne Pathogens: From Isolation to Detection. MICROMACHINES 2025; 16:462. [PMID: 40283337 PMCID: PMC12029729 DOI: 10.3390/mi16040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Waterborne pathogens seriously threaten human life and can cause diarrhea, gastrointestinal disorders, and more serious systemic infections. These pathogens are usually caused by contaminated water sources that contain disease-causing microorganisms, such as bacteria, viruses, and parasites, which cause infection and disease when they enter the human body through drinking water or other means. Due to the wide range of transmission routes and the high potential risk of waterborne pathogens, there is an urgent need for an ultrasensitive, rapid, and specific pathogenic microorganism monitoring platform to meet the critical monitoring needs of some water bodies' collection points daily monitoring needs. Microfluidics-based pathogen surveillance methods are an important stage towards automated detection through real-time and multi-targeted monitoring, thus enabling a comprehensive assessment of the risk of exposure to waterborne pathogens and even emerging microbial contaminants, and thus better protection of public health. Therefore, this paper reviews the latest research results on the isolation and detection of waterborne pathogens based on microfluidic methods. First, we introduce the traditional methods for isolation and detection of pathogens. Then, we compare some existing microfluidic pathogen isolation and detection methods and finally look forward to some future research directions and applications of microfluidic technology in waterborne pathogens monitoring.
Collapse
Affiliation(s)
- Guohao Xu
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China;
- Jiaxing Key Laboratory of Biosemiconductors (A), Xiangfu Laboratory, Jiashan 314102, China; (J.C.); (R.S.); (F.S.); (B.L.)
| | - Gaozhe Cai
- School of Microelectronics, Shanghai University, Shanghai 201800, China;
| | - Lijuan Liang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxin Cheng
- Jiaxing Key Laboratory of Biosemiconductors (A), Xiangfu Laboratory, Jiashan 314102, China; (J.C.); (R.S.); (F.S.); (B.L.)
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Lujie Song
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China;
| | - Rui Sun
- Jiaxing Key Laboratory of Biosemiconductors (A), Xiangfu Laboratory, Jiashan 314102, China; (J.C.); (R.S.); (F.S.); (B.L.)
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Feng Shen
- Jiaxing Key Laboratory of Biosemiconductors (A), Xiangfu Laboratory, Jiashan 314102, China; (J.C.); (R.S.); (F.S.); (B.L.)
| | - Bo Liu
- Jiaxing Key Laboratory of Biosemiconductors (A), Xiangfu Laboratory, Jiashan 314102, China; (J.C.); (R.S.); (F.S.); (B.L.)
- School of Microelectronics, Shanghai University, Shanghai 201800, China;
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
2
|
Barzoki AK, Shamloo A. Streamline-directed tunable deterministic lateral displacement chip: A numerical approach to efficient particle separation. J Chromatogr A 2024; 1736:465397. [PMID: 39342730 DOI: 10.1016/j.chroma.2024.465397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
In conventional Deterministic Lateral Displacement (DLD), the migration behavior of a particle of specific size is determined by the critical diameter (Dc), which is predefined by the device's geometry. In contrast to the typical approach that alters the angle between the pillar array and fluid streamlines by modifying the geometrical parameters, this study introduces a novel perspective that focuses on changing the direction of the streamlines. The proposed technique offers a tunable DLD chip featuring a straightforward design that allows for easy fabrication. This chip features one completely horizontal pillar array with two bypass channels on the top and bottom of the DLD chamber. The width of these bypass channels changes linearly from their inlet to their outlet. Two design configurations are suggested for this chip, characterized by either parallel or unparallel slopes of the bypass channels. This chip is capable of generating a wide range of Dc values by manipulating two distinct control parameters. The first control parameter involves adjusting the flow rates in the two bypass channels. The second control parameter entails controlling the slopes of these bypass channels. Both of these parameters influence the direction of particle-carrying streamlines resulting in a change in the path-line of the particles. By changing the angle of streamlines with pillar array, the Dc can be tuned. Prior to determining the Dc for each case, an initial estimation was made using a Python script that utilized the streamline coordinates. Subsequently, through FEM modeling of the particle trajectories, precise Dc values were ascertained and compared with the estimated values, revealing minimal disparities. By adjusting the flow rate and slope of the bypass channels, maximum Dc ranges of 4-10 μm and 8-13 μm can be achieved, respectively. This innovative chip enables the attainment of Dc values spanning from 0.5 to 14 μm.
Collapse
Affiliation(s)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Pope BL, Zhang M, Jo S, Dragnea B, Jacobson SC. Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles. Anal Chem 2024; 96:11845-11852. [PMID: 38976499 PMCID: PMC11606589 DOI: 10.1021/acs.analchem.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integration of optical components into microfluidic devices can enhance particle manipulations, separations, and analyses. We present a method to fabricate microscale diffractive lenses composed of aperiodically spaced concentric rings milled into a thin metal film to precisely position optical tweezers within microfluidic channels. Integrated thin-film microlenses perform the laser focusing required to generate sufficient optical forces to trap particles without significant off-device beam manipulation. Moreover, the ability to trap particles with unfocused laser light allows multiple optical traps to be powered simultaneously by a single input laser. We have optically trapped polystyrene particles with diameters of 0.5, 1, 2, and 4 μm over microlenses fabricated in chromium and gold films. Optical forces generated by these microlenses captured particles traveling at fluid velocities up to 64 μm/s. Quantitative trapping experiments with particles in microfluidic flow demonstrate size-based differential trapping of neutrally buoyant particles where larger particles required a stronger trapping force. The optical forces on these particles are identical to traditional optical traps, but the addition of a continuous viscous drag force from the microfluidic flow introduces tunable size selectivity across a range of laser powers and fluid velocities.
Collapse
Affiliation(s)
- Brigham L Pope
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Mi Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Suhun Jo
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
4
|
Kang W, Luan T, Zhou W, Yin Y, Liu L, Wang S, Li Z, Yang J, Ho HP, Shou Q, Xing X. Coupled photothermal vortices for capture, sorting, and transportation of particles. OPTICS LETTERS 2024; 49:3974-3977. [PMID: 39008754 DOI: 10.1364/ol.530077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Optofluidic techniques have evolved as a prospering strategy for microparticle manipulation via fluid. Unfortunately, there is still a lack of manipulation with simple preparation, easy operation, and multifunctional integration. In this Letter, we present an optofluidic device based on a graphite oxide (GO)-coated dual-fiber structure for multifunctional particle manipulation. By changing the optical power and the relative distance of the fibers, the system can excite thermal fluidic vortices with three inter-coupled states, namely uncoupled, partially coupled and completely coupled states, and therefore can realize capture, sorting, and transportation of the target particles. We conduct a numerical analysis of the whole system, and the results are consistent with the experimental phenomena. This versatile device can be utilized to manipulate target particles in complex microscopic material populations with the advantages of flexible operation, user-friendly control, and low cost.
Collapse
|
5
|
Zamboni R, Gauthier-Manuel L, Zaltron A, Lucchetti L, Chauvet M, Sada C. Opto-microfluidic coupling between optical waveguides and tilted microchannels in lithium niobate. OPTICS EXPRESS 2023; 31:28423-28436. [PMID: 37710896 DOI: 10.1364/oe.495406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023]
Abstract
This work presents a reconfigurable opto-microfluidic coupling between optical waveguides and tilted microfluidic channels in monolithic lithium niobate crystal. The light path connecting two waveguide arrays located on opposite sides of a microfluidic channel depends on the refractive index between the liquid phase and the hosting crystal. As a result, the optical properties of the flowing fluid, which is pumped into the microfluidic channel on demand, can be exploited to control the light pathways inside the optofluidic device. Proof-of-concept applications are herein presented, including microfluidic optical waveguide switching, optical refractive index sensing, and wavelength demultiplexing.
Collapse
|
6
|
Cha H, Dai Y, Hansen HHWB, Ouyang L, Chen X, Kang X, An H, Ta HT, Nguyen NT, Zhang J. Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel. CYBORG AND BIONIC SYSTEMS 2023; 4:0036. [PMID: 37342212 PMCID: PMC10278993 DOI: 10.34133/cbsystems.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Inertial microfluidics uses the intrinsic fluid inertia in confined channels to manipulate the particles and cells in a simple, high-throughput, and precise manner. Inertial focusing in a straight channel results in several equilibrium positions within the cross sections. Introducing channel curvature and adjusting the cross-sectional aspect ratio and shape can modify inertial focusing positions and can reduce the number of equilibrium positions. In this work, we introduce an innovative way to adjust the inertial focusing and reduce equilibrium positions by embedding asymmetrical obstacle microstructures. We demonstrated that asymmetrical concave obstacles could break the symmetry of original inertial focusing positions, resulting in unilateral focusing. In addition, we characterized the influence of obstacle size and 3 asymmetrical obstacle patterns on unilateral inertial focusing. Finally, we applied differential unilateral focusing on the separation of 10- and 15-μm particles and isolation of brain cancer cells (U87MG) from white blood cells (WBCs), respectively. The results indicated an excellent cancer cell recovery of 96.4% and WBC rejection ratio of 98.81%. After single processing, the purity of the cancer cells was dramatically enhanced from 1.01% to 90.13%, with an 89.24-fold enrichment. We believe that embedding asymmetric concave micro-obstacles is a new strategy to achieve unilateral inertial focusing and separation in curved channels.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Helena H. W. B. Hansen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Xiangxun Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Xiaoyue Kang
- School of Engineering, University of Tasmania, Churchill Avenue, Tasmania 7005, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
7
|
Jiang C, Wang Y, Dong T, Li D, Yan B, Chen P, Shao K, Wang X, Wang Z. Completely non-invasive cell manipulation in lens-integrated microfluidic devices by single-fiber optical tweezers. OPTICS LETTERS 2023; 48:2130-2133. [PMID: 37058659 DOI: 10.1364/ol.486264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In a fiber-based optical tweezer system, it is a common practice to insert the fiber probe into the sample solution to perform the tweezer function. Such a configuration of the fiber probe may lead to unwanted contamination and/or damage to the sample system and is thus potentially invasive. Here, we propose a completely non-invasive method for cell manipulation by combining a microcapillary microfluidic device and an optical fiber tweezer. We demonstrate that Chlorella cells inside the microcapillary channel can be successfully trapped and manipulated by an optical fiber probe located outside of the microcapillary, thus making the process completely non-invasive. The fiber does not even invade the sample solution. To our knowledge, this is the first report of such a method. The speed of stable manipulation can reach the 7 µm/s scale. We found that the curved walls of the microcapillaries worked like a lens, which helped to boost the light focusing and trapping efficiency. Numerical simulation of optical forces under medium settings reveals that the optical forces can be enhanced by up to 1.44 times, and the optical forces can change direction under certain conditions.
Collapse
|
8
|
Zhao J, Han Z, Xu C, Li L, Pei H, Song Y, Wang Z, Tang B. Separation and single-cell analysis for free gastric cancer cells in ascites and peritoneal lavages based on microfluidic chips. EBioMedicine 2023; 90:104522. [PMID: 36933411 PMCID: PMC10034419 DOI: 10.1016/j.ebiom.2023.104522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUNDS Detecting free cancer cells from ascites and peritoneal lavages is crucial for diagnosing gastric cancer (GC). However, traditional methods are limited for early-stage diagnosis due to their low sensitivity. METHODS A label-free, rapid, and high-throughput technique was developed for separating cancer cells from ascites and peritoneal lavages using an integrated microfluidic device, taking advantage of dean flow fractionation and deterministic lateral displacement. Afterward, separated cells were analyzed using a microfluidic single-cell trapping array chip (SCTA-chip). In situ immunofluorescence for EpCAM, YAP-1, HER-2, CD45 molecular expressions, and Wright-Giemsa staining were performed for cells in SCTA-chips. At last, YAP1 and HER-2 expression in tissues was analyzed by immunohistochemistry. FINDINGS Through integrated microfluidic device, cancer cells were successfully separated from simulated peritoneal lavages containing 1/10,000 cancer cells with recovery rate of 84.8% and purity of 72.4%. Afterward, cancer cells were isolated from 12 patients' ascites samples. Cytological examinations showed cancer cells were efficiently enriched with background cells excluded. Afterwards, separated cells from ascites were analyzed by SCTA-chips, and recognized as cancer cells through EpCAM+/CD45- expression and Wright-Giemsa staining. Interestingly, 8 out of 12 ascites samples showed HER-2+ cancer cells. At last, the results through a serial expression analysis showed that YAP1 and HER-2 have discordant expression during metastasis. INTERPRETATION Microfluidic Chips developed in our study could not only rapidly detect label-free free GC cells in ascites and peritoneal lavages with high-throughput, they could also analyze ascites cancer cells at the single-cell level, improving peritoneal metastasis diagnosis and investigation of therapeutic targets. FUNDING This research was supported by National Natural Science Foundation of China (22134004, U1908207, 91859111); Natural Science Foundation of Shandong Province of China (ZR2019JQ06); Taishan Scholars Program of Shandong Province tsqn (201909077); Local Science and Technology Development Fund Guided by the Central Government (YDZX20203700002568); Applied Basic Research Program of Liaoning Province (2022020284-JH2/1013).
Collapse
Affiliation(s)
- Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, Liaoning, 110001, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China; Institute of Health Sciences, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, Liaoning, 110001, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China; Institute of Health Sciences, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, Liaoning, 110001, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China; Institute of Health Sciences, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110001, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
9
|
Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for life sciences. J Nanobiotechnology 2023; 21:85. [PMID: 36906553 PMCID: PMC10008080 DOI: 10.1186/s12951-023-01846-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The advancement of microfluidics has enabled numerous discoveries and technologies in life sciences. However, due to the lack of industry standards and configurability, the design and fabrication of microfluidic devices require highly skilled technicians. The diversity of microfluidic devices discourages biologists and chemists from applying this technique in their laboratories. Modular microfluidics, which integrates the standardized microfluidic modules into a whole, complex platform, brings the capability of configurability to conventional microfluidics. The exciting features, including portability, on-site deployability, and high customization motivate us to review the state-of-the-art modular microfluidics and discuss future perspectives. In this review, we first introduce the working mechanisms of the basic microfluidic modules and evaluate their feasibility as modular microfluidic components. Next, we explain the connection approaches among these microfluidic modules, and summarize the advantages of modular microfluidics over integrated microfluidics in biological applications. Finally, we discuss the challenge and future perspectives of modular microfluidics.
Collapse
Affiliation(s)
- Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Hui Fang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Geng W, Liu Y, Yu N, Qiao X, Ji M, Niu Y, Niu L, Fu W, Zhang H, Bi K, Chou X. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells. Anal Chim Acta 2023; 1255:341138. [PMID: 37032055 DOI: 10.1016/j.aca.2023.341138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Obtaining highly purified intact living cells from complex environments has been a challenge, such as the isolation of circulating tumor cells (CTCs) from blood. In this work, we demonstrated an acoustic-based ultra-compact device for cell sorting, with a chip size of less than 2 × 1.5 cm2. This single actuator device allows non-invasive and label-free isolation of living cells, offering greater flexibility and applicability. The device performance was optimized with different-sized polystyrene (PS) particles and blood cells spiked with cancer cells. Using the narrow-path travelling surface acoustic wave (np-TSAW), precise isolation of 10 μm particles from a complex mixture of particles (5, 10, 20 μm) and separation of 8 μm and 10 μm particles was achieved. The purified collection of 10 μm particles with high separation efficiency (98.75%) and high purity (98.1%) was achieved by optimizing the input voltage. Further, we investigated the isolation and purification of CTCs (MCF-7, human breast cancer cells) from blood cells with isolation efficiency exceeding 98% and purity reaching 93%. Viabilities of the CTCs harvested from target-outlet were all higher than 97% after culturing for 24, 48, and 72 h, showing good proliferation ability. This novel ultra-miniaturized microfluidic chip demonstrates the ability to sorting cells with high-purity and label-free, providing an attractive miniaturized system alternative to traditional sorting methods.
Collapse
|
11
|
Chen WY, Liu YY, Ngan Kong JA, Li LPH, Chen YB, Cheng CH, Liu CY. Biological cell trapping and manipulation of a photonic nanojet by a specific microcone-shaped optical fiber tip. OPTICS LETTERS 2023; 48:1216-1219. [PMID: 36857252 DOI: 10.1364/ol.484849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Trapping and manipulating mesoscopic biological cells with high precision and flexibility are very important for numerous biomedical applications. In particular, a photonic nanojet based on a non-resonance focusing phenomenon can serve as a powerful tool for manipulating red blood cells and tumor cells in blood. In this study, we demonstrate an approach to trap and drive cells using a high-quality photonic nanojet which is produced by a specific microcone-shaped optical-fiber tip. The dynamic chemical etching method is used to fabricate optical-fiber probes with a microcone-shaped tip. Optical forces and potentials exerted on a red blood cell by a microcone-shaped fiber tips are analyzed based on finite-difference time-domain calculations. Optical trapping and driving experiments are done using breast cancer cells and red blood cells. Furthermore, a cell chain is formed by adjusting the magnitude of the optical force. The real-time backscattering intensities of multiple cells are detected, and highly sensitive trapping is achieved. This microcone-shaped optical fiber probe is potentially a powerful device for dynamic cell assembly, optical sorting, and the precise diagnosis of vascular diseases.
Collapse
|
12
|
Qiu X, He T, Wu X, Wang P, Wang X, Fu Q, Fang X, Li S, Li Y. Combining fiber optical tweezers and Raman spectroscopy for rapid identification of melanoma. JOURNAL OF BIOPHOTONICS 2022; 15:e202200158. [PMID: 36053940 DOI: 10.1002/jbio.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Cutaneous melanoma is a skin tumor with a high degree of malignancy and fatality rate, the incidence of which has increased in recent years. Therefore, a rapid and sensitive diagnostic technique of melanoma cells is urgently needed. In this paper, we present a new approach using fiber optical tweezers to manipulate melanoma cells to measure their Raman spectra. Then, combined with Principal Component Analysis and Support Vector Machines (PCA-SVM) classification model, to achieve the classification of common mutant, wild-type and drug-resistant melanoma cells. A total of 150 Raman spectra of 30 cells were collected from mutant, wild-type and drug-resistant melanoma cell lines, and the classification accuracy was 92%, 94%, 97.5%, respectively. These results suggest that the study of tumor cells based on fiber optical tweezers and Raman spectroscopy is a promising method for early and rapid identification and diagnosis of tumor cells.
Collapse
Affiliation(s)
- Xun Qiu
- College of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tao He
- Department of Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xingda Wu
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Peng Wang
- College of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xin Wang
- College of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Qiuyue Fu
- College of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xianglin Fang
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Shaoxin Li
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Ying Li
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| |
Collapse
|
13
|
Xu Y, Zhong H, Shi M, Zheng Z, Liu S, Shou Q, Li H, Yang G, Li Z, Xing X. Microfiber-directed reversible assembly of Au nanoparticles for SERS detection of pollutants. OPTICS LETTERS 2022; 47:2028-2031. [PMID: 35427328 DOI: 10.1364/ol.454581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interest as a highly sensitive label-free tool to detect pollutants in aqueous environments. However, the high cost and poor reusability of conventional SERS substrates restrict their further applications in rapid and reproducible pollutant detection. Here, we report a reliable optical manipulation method to achieve rapid photothermal self-assembly of Au nanoparticles (AuNPs) in water within 30 s by a tapered optical fiber, which is utilized for highly sensitive SERS substrate preparation. The results show that the SERS substrate achieves low detection limits of 10-9 mol/L with an enhancement factor (EF) of 106 for chemical pollutants solutions, including thiram, pyrene, and rhodamine 6G. The SERS enhancement effect based on assembled AuNPs was more than 20 times that based on a gold colloid solution. As a result, the smart reversible assembly of AuNPs exhibits switchable plasmonic coupling for tuning SERS activity, which is promising for the application of SERS-based sensors and environmental pollutant detection.
Collapse
|
14
|
Taha BA, Ali N, Sapiee NM, Fadhel MM, Mat Yeh RM, Bachok NN, Al Mashhadany Y, Arsad N. Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenges. BIOSENSORS 2021; 11:253. [PMID: 34436055 PMCID: PMC8391612 DOI: 10.3390/bios11080253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 05/06/2023]
Abstract
Understanding environmental information is necessary for functions correlated with human activities to improve healthcare quality and reduce ecological risk. Tapered optical fibers reduce some limitations of such devices and can be considerably more responsive to fluorescence and absorption properties changes. Data have been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, PubMed, and Google Scholar. In this narrative review, we have summarized and analyzed eight classes of tapered-fiber forms: fiber Bragg grating (FBG), long-period fiber grating (LPFG), Mach-Zehnder interferometer (MZI), photonic crystals fiber (PCF), surface plasmonic resonance (SPR), multi-taper devices, fiber loop ring-down technology, and optical tweezers. We evaluated many issues to make an informed judgement about the viability of employing the best of these methods in optical sensors. The analysis of performance for tapered optical fibers depends on four mean parameters: taper length, sensitivity, wavelength scale, and waist diameter. Finally, we assess the most potent strategy that has the potential for medical and environmental applications.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (B.A.T.); (N.A.); (N.M.S.); (M.M.F.); (R.M.M.Y.); (N.N.B.)
| | - Norazida Ali
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (B.A.T.); (N.A.); (N.M.S.); (M.M.F.); (R.M.M.Y.); (N.N.B.)
| | - Nurfarhana Mohamad Sapiee
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (B.A.T.); (N.A.); (N.M.S.); (M.M.F.); (R.M.M.Y.); (N.N.B.)
| | - Mahmoud Muhanad Fadhel
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (B.A.T.); (N.A.); (N.M.S.); (M.M.F.); (R.M.M.Y.); (N.N.B.)
| | - Ros Maria Mat Yeh
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (B.A.T.); (N.A.); (N.M.S.); (M.M.F.); (R.M.M.Y.); (N.N.B.)
| | - Nur Nadia Bachok
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (B.A.T.); (N.A.); (N.M.S.); (M.M.F.); (R.M.M.Y.); (N.N.B.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Ramadi 00964, Anbar, Iraq;
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia; (B.A.T.); (N.A.); (N.M.S.); (M.M.F.); (R.M.M.Y.); (N.N.B.)
| |
Collapse
|
15
|
Su J, Li N, Wang X, Chen X, Hu H. Simultaneous and independent capture of multiple Rayleigh dielectric nanospheres with sine-modulated Gaussian beams. Sci Rep 2021; 11:125. [PMID: 33420218 PMCID: PMC7794453 DOI: 10.1038/s41598-020-80470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
This study investigates the propagation properties and radiation forces on Rayleigh dielectric particles produced by novel sine-modulated Gaussian beams (SMGBs) because of the unique focusing properties of four independent light intensity distribution centers and possessing many deep potential wells in the output plane of the target laser. The described beams can concurrently capture and manipulate multiple Rayleigh dielectric spheres with high refractive indices without disturbing each other at the focus plane. Spheres with a low refractive index can be guided or confined in the focus but cannot be stably trapped in this single beam trap. Simulation results demonstrate that the focused SMGBs can be used to trap particle in different planes by increasing the sine-modulate coefficient g. The conditions for effective and stable capture of high-index particles and the threshold of detectable radius are determined at the end of this study.
Collapse
Affiliation(s)
- Jingjing Su
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xianfan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingfan Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Quantum Sensing Center, Zhejiang Lab, Hangzhou, 310000, China
| | - Huizhu Hu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China. .,Quantum Sensing Center, Zhejiang Lab, Hangzhou, 310000, China.
| |
Collapse
|
16
|
Recent Development of Microfluidic Technology for Cell Trapping in Single Cell Analysis: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microfluidic technology has emerged from the MEMS (Micro-Electro-Mechanical System)-technology as an important research field. During the last decade, various microfluidic technologies have been developed to open up a new era for biological studies. To understand the function of single cells, it is very important to monitor the dynamic behavior of a single cell in a living environment. Cell trapping in single cell analysis is urgently demanded There have been some review papers focusing on drug screen and cell analysis. However, cell trapping in single cell analysis has rarely been covered in the previous reviews. The present paper focuses on recent developments of cell trapping and highlights the mechanisms, governing equations and key parameters affecting the cell trapping efficiency by contact-based and contactless approach. The applications of the cell trapping method are discussed according to their basic research areas, such as biology and tissue engineering. Finally, the paper highlights the most promising cell trapping method for this research area.
Collapse
|
17
|
Zhong Y, Wang Y, Wang Z, Xing Z, Xiao Y, Yu J, Guan H, Luo Y, Lu H, Zhu W, Chen Z. Ultrafast freestanding microfiber humidity sensor based on three-dimensional graphene network cladding. OPTICS EXPRESS 2020; 28:4362-4373. [PMID: 32121674 DOI: 10.1364/oe.379812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
An all-fiber humidity sensor is proposed and fabricated by depositing three-dimensional graphene network (3DGN) around the surface of a freestanding microfiber (MF). The high specific surface area and porosity of 3DGN enhances its interaction with water molecules, allowing high performance of the humidity sensor. The sensor can operate in a wide relative humidity (RH) range of 11.6%RH-90.9%RH with a high sensitivity of -2.841 dB/%RH in the RH range (80.3%RH - 90.9%RH). The response and recovery times of this type of microfiber sensor are measured respectively to be 57 ms and 55 ms, which are one order magnitude faster than those of other fiber RH sensors activated by two-dimensional materials coating. Such an all-fiber RH sensor with high sensitivity and fast response property possesses great potential of application in widespread fields, such as biology, chemical processing and food processing.
Collapse
|
18
|
Waveguiding and focusing in a bio-medium with an optofluidic cell chain. Acta Biomater 2020; 103:165-171. [PMID: 31812842 DOI: 10.1016/j.actbio.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
Long-distance waveguiding and submicron focusing of light in a bio-medium are crucial for biomedical sensing and imaging. Disordered bio-mediums usually exhibit high scattering and absorption, which limits effective waveguiding and focusing. Here, we demonstrate an optofluidic cell chain, assembled via an optical trapping force from an optical fiber probe, to achieve long-distance waveguiding and submicron light focusing in a disordered bio-medium. By applying a trapping light at 980 nm to generate an optical force, stable binding of E. faecalis cells was achieved in a fluid to assemble cell chains of different lengths. The length could reach up to 360 µm and the incident light (at 675, 532 and 473 nm) could be focused into a beam with a waist radius of 400 nm. As a potential practical application, backscattered signals from human red blood cells were detected using the cell chains, which is expected to benefit biomedical sensing and single cell analysis. STATEMENT OF SIGNIFICANCE: With the assistance of optofluidic techniques, we assembled an E. faecalis cell chain with a length up to 360 µm to achieve long-distance waveguiding and submicron focusing at a propagation loss of 0.03 dB/µm in the bio-medium. Visible lights were launched into the cell chain and the incident lights can converge into a beam with a waist radius of 400 nm. The cell chain was further used to detect the backscattering signals from human red blood cells (RBCs), and the results indicate that the cell chain can be applied as a fully biocompatible extension of the probe for the real-time detection of RBCs in healthy and pathological states.
Collapse
|
19
|
Zhao X, Zhao N, Shi Y, Xin H, Li B. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. MICROMACHINES 2020; 11:E114. [PMID: 31973061 PMCID: PMC7074902 DOI: 10.3390/mi11020114] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Optical trapping is widely used in different areas, ranging from biomedical applications, to physics and material sciences. In recent years, optical fiber tweezers have attracted significant attention in the field of optical trapping due to their flexible manipulation, compact structure, and easy fabrication. As a versatile tool for optical trapping and manipulation, optical fiber tweezers can be used to trap, manipulate, arrange, and assemble tiny objects. Here, we review the optical fiber tweezers-based trapping and manipulation, including dual fiber tweezers for trapping and manipulation, single fiber tweezers for trapping and single cell analysis, optical fiber tweezers for cell assembly, structured optical fiber for enhanced trapping and manipulation, subwavelength optical fiber wire for evanescent fields-based trapping and delivery, and photothermal trapping, assembly, and manipulation.
Collapse
Affiliation(s)
| | | | | | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China; (X.Z.); (N.Z.); (Y.S.); (B.L.)
| | | |
Collapse
|
20
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
21
|
Liu X, Li Y, Xu X, Zhang Y, Li B. Optical fan for single-cell screening. JOURNAL OF BIOPHOTONICS 2020; 13:e201900155. [PMID: 31325226 DOI: 10.1002/jbio.201900155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The single-cell screening has attracted great attentions in advanced biomedicine and tissue biology, especially for the early disease diagnosis and treatment monitoring. In this work, by using a specific-designed fiber probe with a flat facet, we propose an "optical fan" strategy to screen K562 cells at the single-cell level from a populations of RBCs. After the 980-nm laser beam injected into the fiber probe, the RBCs were blown away but holding target K562 cells in place. Further, multiple leukemic cells can be screened from hundreds of red blood cells, providing an efficient approach for the cell screening. The experimental results were interpreted by the numerical simulation, and the stiffness of optical fan was also discussed.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Tang X, Zhang Y, Su W, Zhang Y, Liu Z, Yang X, Zhang J, Yang J, Yuan L. Super-low-power optical trapping of a single nanoparticle. OPTICS LETTERS 2019; 44:5165-5168. [PMID: 31674957 DOI: 10.1364/ol.44.005165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/26/2019] [Indexed: 05/20/2023]
Abstract
We propose and demonstrate a simple approach for noncontact, three-dimensional, and stable trapping of a single nanoparticle with a super-low incident laser power (0.7 mW) via the single-fiber optical tweezers. We splice a section of single-mode fiber and a section of multimode fiber to construct a Bessel-like beam, which produces narrow output laser beams. We integrate a high-refractive-index glass microsphere on the tip of the multimode fiber to focus the narrow output laser beams. The focused beams provide a nanoscale optical trap for a single nanoparticle (polystyrene sphere, diameter of 200 nm). This optical fiber probe has the advantages of high laser transmission efficiency, high spatial resolution, and minimum joule heating. The proposed approach extends the application potential of fiber-based optical manipulations, such as nanoparticle sorting, single-cell organelle analysis, and bio-sensing.
Collapse
|
23
|
Liu X, Li Y, Xu X, Zhang Y, Li B. Red-Blood-Cell-Based Microlens: Application to Single-Cell Membrane Imaging and Stretching. ACS APPLIED BIO MATERIALS 2019; 2:2889-2895. [DOI: 10.1021/acsabm.9b00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|