1
|
John-Herpin A, Tittl A, Kühner L, Richter F, Huang SH, Shvets G, Oh SH, Altug H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110163. [PMID: 35638248 DOI: 10.1002/adma.202110163] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.
Collapse
Affiliation(s)
- Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
2
|
Wagner M, Seifert A, Liz-Marzán LM. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics. NANOSCALE HORIZONS 2022; 7:1259-1278. [PMID: 36047407 DOI: 10.1039/d2nh00276k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) leads to a largely improved detection of polar molecules, compared to standard infrared absorption. The enhancement principle is based on localized surface plasmon resonances of the substrate, which match the frequency of molecular vibrations in the analyte of interest. Therefore, in practical terms, the SEIRA sensor needs to be tailored to each specific analyte. We review SEIRA sensors based on metal plasmonics for the detection of biomolecules such as DNA, proteins, and lipids. We further focus this review on chemical SEIRA sensors, with potential applications in quality control, as well as on the improvement in sensor geometry that led to the development of multiresonant SEIRA substrates as sensors for multiple analytes. Finally, we give an introduction into the integration of SEIRA sensors with surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Marita Wagner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
| | - Andreas Seifert
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Therien DAB, Read ST, Rosendahl SM, Lagugné‐Labarthet F. Optical Resonances of Chiral Metastructures in the Mid‐infrared Spectral Range. Isr J Chem 2022. [DOI: 10.1002/ijch.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Denis A. B. Therien
- Department of Chemistry Western University The University of Western Ontario). 1151 Richmond Street London Ontario, N6A 5B7 Canada
| | - Stuart T. Read
- Canadian Light Source Inc. 44 Innovation Blvd Saskatoon Saskatchewan S7N 2V3 Canada
| | - Scott M. Rosendahl
- Canadian Light Source Inc. 44 Innovation Blvd Saskatoon Saskatchewan S7N 2V3 Canada
| | - François Lagugné‐Labarthet
- Department of Chemistry Western University The University of Western Ontario). 1151 Richmond Street London Ontario, N6A 5B7 Canada
| |
Collapse
|
4
|
John‐Herpin A, Kavungal D, von Mücke L, Altug H. Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006054. [PMID: 33615570 PMCID: PMC11469153 DOI: 10.1002/adma.202006054] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Insights into the fascinating molecular world of biological processes are crucial for understanding diseases, developing diagnostics, and effective therapeutics. These processes are complex as they involve interactions between four major classes of biomolecules, i.e., proteins, nucleic acids, carbohydrates, and lipids, which makes it important to be able to discriminate between all these different biomolecular species. In this work, a deep learning-augmented, chemically-specific nanoplasmonic technique that enables such a feat in a label-free manner to not disrupt native processes is presented. The method uses a highly sensitive multiresonant plasmonic metasurface in a microfluidic device, which enhances infrared absorption across a broadband mid-IR spectrum and in water, despite its strongly overlapping absorption bands. The real-time format of the optofluidic method enables the collection of a vast amount of spectrotemporal data, which allows the construction of a deep neural network to discriminate accurately between all major classes of biomolecules. The capabilities of the new method are demonstrated by monitoring of a multistep bioassay containing sucrose- and nucleotides-loaded liposomes interacting with a small, lipid membrane-perforating peptide. It is envisioned that the presented technology will impact the fields of biology, bioanalytics, and pharmacology from fundamental research and disease diagnostics to drug development.
Collapse
Affiliation(s)
- Aurelian John‐Herpin
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Deepthy Kavungal
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Lea von Mücke
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Hatice Altug
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|