1
|
Wang W, Wen J, Sheng Y, Wei C, Kong C, Liu Y, Wei X, Yang Z. Shot-Noise Limited Nonlinear Optical Imaging Excited With GHz Femtosecond Pulses and Denoised by Deep-Learning. JOURNAL OF BIOPHOTONICS 2024; 17:e202400186. [PMID: 39218434 DOI: 10.1002/jbio.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleaching. Here, we demonstrate the use of a U-Net-based deep-learning algorithm for suppressing the inherent shot noise of the two-photon fluorescence images excited with GHz femtosecond pulses. With the trained denoising neural network, the image quality of the representative two-photon fluorescence images of the biological samples is shown to be significantly improved. Moreover, for input raw images with even SNR reduced to -4.76 dB, the trained denoising network can recover the main image structure from noise floor with acceptable fidelity and spatial resolution. It is anticipated that the combination of GHz femtosecond pulses and deep-learning denoising algorithm can be a promising solution for eliminating the trade-off between photoinduced damage and image quality in nonlinear optical imaging platforms.
Collapse
Affiliation(s)
- Wenlong Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Junpeng Wen
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Yuke Sheng
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Chiyi Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China University of Technology, Guangzhou, China
| | - Cihang Kong
- Institutes for Translational Brain Research, Fudan University, Shanghai, China
| | - Yalong Liu
- Guangzhou Yangming Laser Technology Co., Ltd, Guangzhou, China
| | - Xiaoming Wei
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
- Research Institute of Future Technology, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Wen J, Pilger C, Wang W, Erapaneedi R, Xiu H, Fan Y, Hu X, Huser T, Kiefer F, Wei X, Yang Z. Watt-level all polarization-maintaining femtosecond fiber laser source at 1100 nm. OPTICS EXPRESS 2024; 32:9625-9633. [PMID: 38571192 DOI: 10.1364/oe.514197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
We demonstrate a compact watt-level all polarization-maintaining (PM) femtosecond fiber laser source at 1100 nm. The fiber laser source is seeded by an all PM fiber mode-locked laser employing a nonlinear amplifying loop mirror. The seed laser can generate stable pulses at a fundamental repetition rate of 40.71 MHz with a signal-to-noise rate of >100 dB and an integrated relative intensity noise of only ∼0.061%. After two-stage external amplification and pulse compression, an output power of ∼1.47 W (corresponding to a pulse energy of ∼36.1 nJ) and a pulse duration of ∼251 fs are obtained. The 1100 nm femtosecond fiber laser is then employed as the excitation light source for multicolor multi-photon fluorescence microscopy of Chinese hamster ovary (CHO) cells stably expressing red fluorescent proteins.
Collapse
|