1
|
Hu Y, Feng Y, Long X, Zheng D, Liu G, Lu Y, Ren Q, Huang Z. Megahertz multi-parametric ophthalmic OCT system for whole eye imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:3000-3017. [PMID: 38855668 PMCID: PMC11161356 DOI: 10.1364/boe.517757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
An ultrahigh-speed, wide-field OCT system for the imaging of anterior, posterior, and ocular biometers is crucial for obtaining comprehensive ocular parameters and quantifying ocular pathology size. Here, we demonstrate a multi-parametric ophthalmic OCT system with a speed of up to 1 MHz for wide-field imaging of the retina and 50 kHz for anterior chamber and ocular biometric measurement. A spectrum correction algorithm is proposed to ensure the accurate pairing of adjacent A-lines and elevate the A-scan speed from 500 kHz to 1 MHz for retinal imaging. A registration method employing position feedback signals was introduced, reducing pixel offsets between forward and reverse galvanometer scanning by 2.3 times. Experimental validation on glass sheets and the human eye confirms feasibility and efficacy. Meanwhile, we propose a revised formula to determine the "true" fundus size using all-axial length parameters from different fields of view. The efficient algorithms and compact design enhance system compatibility with clinical requirements, showing promise for widespread commercialization.
Collapse
Affiliation(s)
- Yicheng Hu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Yutao Feng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- The College of Biochemical Engineering, Beijing Union University, Beijing 100021, China
| | - Xing Long
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Dongye Zheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Gangjun Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Yanye Lu
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Zhiyu Huang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| |
Collapse
|
2
|
Shi Y, Liu J, Gong Z, Burger C, Jayaraman V, Wang RK. Multi-channel delay sampling to extend imaging depth in high-speed swept-source OCT systems. OPTICS LETTERS 2024; 49:2217-2220. [PMID: 38691683 PMCID: PMC11275917 DOI: 10.1364/ol.517493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
We present a multi-channel delay sampling method to extend imaging depth in high-speed swept-source optical coherence tomography (SS-OCT). A balanced detector captures interference signals, converting them into electrical signals, which are then split into N channels, each with fixed time delays determined by the length of electrical cables. Then, they are digitized by an N-channel acquisition card. A calibration procedure is utilized to compensate for non-uniform phase shifts resulting from fixed time delays. The N-channel signals are merged in k-space and resampled to obtain a linearized spectrum, which increases the sampling rate by a factor of N, thereby extending the ranging distance by N times, all without altering k-clock triggering or sacrificing other imaging performance. The signal-to-noise ratio and sensitivity within the original depth range also have been enhanced. This advancement contributes to the improvement of the overall performance of SS-OCT systems.
Collapse
Affiliation(s)
- Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | | | | | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
3
|
Wisniowiecki AM, Applegate BE. Electronic frequency shifting enables long, variable working distance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:6579-6591. [PMID: 38420318 PMCID: PMC10898551 DOI: 10.1364/boe.504034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
Increased imaging range is of growing interest in many applications of optical coherence tomography to reduce constraints on sample location, size, and topography. The design of optical coherence tomography systems with sufficient imaging range (e.g., 10s of centimeters) is a significant challenge due to the direct link between imaging range and acquisition bandwidth. We have developed a novel and flexible method to extend the imaging range in optical coherence tomography using electronic frequency shifting, enabling imaging in dynamic environments. In our approach, a laser with a quasi-linear sweep is used to limit the interferometric bandwidth, enabling decoupling of imaging range and acquisition bandwidth, while a tunable lens allows dynamic refocusing in the sample arm. Electronic frequency shifting then removes the need for high frequency digitization. This strategy is demonstrated to achieve high contrast morphological imaging over a > 21 cm working distance range, while maintaining high resolution and phase sensitivity. The system design is flexible to the application while requiring only a simple phase correction in post-processing. By implementing this approach in an auto-focusing paradigm, the proposed method demonstrates strong potential for the translation of optical coherence tomography into emerging applications requiring variable and centimeter-scale imaging ranges.
Collapse
Affiliation(s)
- Anna M. Wisniowiecki
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| |
Collapse
|