1
|
Liu J, Zhong J, Tang S, Huang J, Zhang Y, Qiu P, Wang K. Polarization multiplexed 2200-nm soliton generation and its application to 3-photon microscopy. OPTICS EXPRESS 2024; 32:48226-48233. [PMID: 39876132 DOI: 10.1364/oe.544911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
The 2200-nm window has recently been demonstrated as the longest excitation window for deep-tissue multiphoton microscopy (MPM). So far, MPM at this window exclusively uses a soliton laser source based on soliton self-frequency shift (SSFS). In order to boost the multiphoton signal level at this window, here we demonstrate a polarization multiplexed soliton source based on orthogonal polarized SSFS in a polarization maintaining large mode area (PM LMA) fiber. Using this technology, the effective pulse repetition rate, i.e., the pulse number per unit time, is twice higher than the 1550-nm pump laser with a fixed repetition rate. We further demonstrate comparative third harmonic generation (THG) and 3-photon fluorescence (3PF) imaging with this polarization multiplexed soliton source and single polarization soliton source. The ∼2 times higher 3-photon signal of the former indicates that this soliton multiplexing technology is promising for MPM at the 2200-nm window.
Collapse
|
2
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Zhang Y, Zhong J, Cheng H, Huang J, Li Z, Zhang C, Gao Z, Xu Z, Xu G, Qiu P, Wang K. Comparison of the penetration depth in mouse brain in vivo through 3PF imaging using AIE nanoparticle labeling and THG imaging within the 1700 nm window. NANOSCALE ADVANCES 2024; 6:511-515. [PMID: 38235073 PMCID: PMC10790977 DOI: 10.1039/d3na00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
3-Photon microscopy (3PM) excited at the 1700 nm window features a smaller tissue attenuation and hence a larger penetration depth in brain imaging compared with other excitation wavelengths in vivo. While the comparison of the penetration depth quantified by effective attenuation length le with other excitation wavelengths have been extensively investigated, comparison within the 1700 nm window has never been demonstrated. This is mainly due to the lack of a proper excitation laser source and characterization of the in vivo emission properties of fluorescent labels within this window. Herein, we demonstrate detailed measurements and comparison of le through the 3-photon imaging of the mouse brain in vivo, at different excitation wavelengths (1600 nm, 1700 nm, and 1800 nm). 3PF imaging and in vivo spectrum measurements were performed using AIE nanoparticle labeling. Our results show that le derived from both 3PF imaging and THG imaging is the largest at 1700 nm, indicating that it enables the deepest penetration in brain imaging in vivo.
Collapse
Affiliation(s)
- Yingxian Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Jincheng Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Hui Cheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Jie Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Zhenhui Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Chi Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Zhiang Gao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen Guangdong 518055 China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University Shenzhen Guangdong 518055 China
| | - Ping Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
4
|
Yu CH, Yu Y, Adsit LM, Chang JT, Barchini J, Moberly AH, Benisty H, Kim J, Young BK, Heng K, Farinella DM, Leikvoll A, Pavan R, Vistein R, Nanfito BR, Hildebrand DGC, Otero-Coronel S, Vaziri A, Goldberg JL, Ricci AJ, Fitzpatrick D, Cardin JA, Higley MJ, Smith GB, Kara P, Nielsen KJ, Smith IT, Smith SL. The Cousa objective: a long-working distance air objective for multiphoton imaging in vivo. Nat Methods 2024; 21:132-141. [PMID: 38129618 PMCID: PMC10776402 DOI: 10.1038/s41592-023-02098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.
Collapse
Affiliation(s)
- Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Yiyi Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Liam M Adsit
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jeremy T Chang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Jad Barchini
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Hadas Benisty
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Jinkyung Kim
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brent K Young
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen Heng
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, USA
| | - Deano M Farinella
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Austin Leikvoll
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Rishaab Pavan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Vistein
- Department of Molecular and Comparative Pathobiology, and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Brandon R Nanfito
- Solomon H. Snyder Department of Neuroscience, and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Santiago Otero-Coronel
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | - Gordon B Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ikuko T Smith
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Psychology and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Psychology and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|