Yan Z, Zou J. High-frequency surface-micromachined optical ultrasound transducer array for 3D micro photoacoustic computed tomography.
OPTICS LETTERS 2024;
49:1181-1184. [PMID:
38426968 DOI:
10.1364/ol.505676]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
This Letter reports a new, to the best of our knowledge, high-frequency surface-micromachined optical ultrasound transducer (HF-SMOUT) array for micro photoacoustic computed tomography (µPACT). An 11 × 11 mm2 2D array of 220 × 220 elements (35 µm in diameter) is designed, fabricated, and characterized. The optical resonance wavelength (ORW) of ≥90% of the elements falls within a 6-nm range. The acoustic center frequency and bandwidth of the elements are ∼14 MHz and ∼18 MHz (129%), respectively. The noise equivalent pressure (NEP) is 161 Pa (or 18 m P a/H z) within a measurement bandwidth of 5-75 MHz. The standard deviation of the ORW drift is 0.45 nm and 0.93 nm within 25°C-55°C, respectively, and during a seven-day continuous water immersion. PACT experiments are conducted to evaluate the imaging performances of the HF-SMOUT array. The spatial resolution is estimated as 90 µm (axial) and 250-750 µm (lateral) within a 10 × 10 mm2 field of view (FoV) and the imaging depth of 16 mm. A 3D PA image of a knotted black hair target is also successfully acquired. These results demonstrate the feasibility of using the HF-SMOUT array for µPACT applications.
Collapse