1
|
Liu X, Zhang X, Dong W, Liang Q, Ji CY, Li J. Broadband and high-efficiency polarization conversion with a nano-kirigami based metasurface. Sci Rep 2023; 13:7454. [PMID: 37156806 PMCID: PMC10167358 DOI: 10.1038/s41598-023-34590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Nano-kirigami metasurfaces have attracted increasing attention due to their ease of three-dimension (3D) nanofabrication, versatile shape transformations, appealing manipulation capabilities and rich potential applications in nanophotonic devices. Through adding an out-of-plane degree of freedom to the double split-ring resonators (DSRR) by using nano-kirigami method, in this work we demonstrate the broadband and high-efficiency linear polarization conversion in the near-infrared wavelength band. Specifically, when the two-dimensional DSRR precursors are transformed into 3D counterparts, a polarization conversion ratio (PCR) of more than 90% is realized in wide spectral range from 1160 to 2030 nm. Furthermore, we demonstrate that the high-performance and broadband PCR can be readily tailored by deliberately deforming the vertical displacement or adjusting the structural parameters. Finally, as a proof-of-concept demonstration, the proposal is successfully verified by adopting the nano-kirigami fabrication method. The studied nano-kirigami based polymorphic DSRR mimic a sequence of discrete bulk optical components with multifunction, thereby eliminating the need for their mutual alignment and opening new possibilities.
Collapse
Affiliation(s)
- Xing Liu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaochen Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Liu X, Liang Q, Zhang X, Ji CY, Li J. Nano-kirigami enabled chiral nano-cilia with enhanced circular dichroism at visible wavelengths. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1459-1468. [PMID: 39634589 PMCID: PMC11502046 DOI: 10.1515/nanoph-2022-0543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2024]
Abstract
Nano-kirigami method enables rich diversity of structural geometries that significantly broaden the functionalities of optical micro/nano-devices. However, the methodologies of various nano-kirigami are still limited and as a result, the chiral nano-kirigami structure has yet been pushed to the limit for operation at visible wavelength region. Here, the merits of the various nano-kirigami strategies are comprehensively explored and bio-inspired nano-cilia metasurface with enhanced circular dichroism at visible wavelengths is demonstrated. The stereo chiral nano-cilia metasurface is designed with three-fold rotational symmetry, which exhibits tuneable chiroptical responses when the nano-cilia are deformed to form strong chiral light-matter interactions. By employing electron-beam lithography (EBL) and focused ion beam (FIB) lithography, on-chip nano-cilia metasurfaces are experimentally realized in near-infrared wavelengths region and at visible wavelengths, respectively, successfully validating the giant circular dichroism revealed in simulations. Our work is useful to broaden the existing platform of micro/nano-scale manufacturing and could provide an effective method for the realization of versatile bioinspired nanostructures with profound chiroptical responses.
Collapse
Affiliation(s)
- Xing Liu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Xiaochen Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|