1
|
Rimoli CV, Moretti C, Soldevila F, Brémont E, Ventalon C, Gigan S. Demixing fluorescence time traces transmitted by multimode fibers. Nat Commun 2024; 15:6286. [PMID: 39060262 PMCID: PMC11282286 DOI: 10.1038/s41467-024-50306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Optical methods based on thin multimode fibers (MMFs) are promising tools for measuring neuronal activity in deep brain regions of freely moving mice thanks to their small diameter. However, current methods are limited: while fiber photometry provides only ensemble activity, imaging techniques using of long multimode fibers are very sensitive to bending and have not been applied to unrestrained rodents yet. Here, we demonstrate the fundamentals of a new approach using a short MMF coupled to a miniscope. In proof-of-principle in vitro experiments, we disentangled spatio-temporal fluorescence signals from multiple fluorescent sources transmitted by a thin (200 µm) and short (8 mm) MMF, using a general unconstrained non-negative matrix factorization algorithm directly on the raw video data. Furthermore, we show that low-cost open-source miniscopes have sufficient sensitivity to image the same fluorescence patterns seen in our proof-of-principle experiment, suggesting a new avenue for novel minimally invasive deep brain studies using multimode fibers in freely behaving mice.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Claudio Moretti
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Enora Brémont
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France.
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France.
| |
Collapse
|
2
|
Guo R, Sorenson R, Scharf R, Koch A, Groover A, Sieburth L, Blair S, Menon R. Overcoming the field-of-view to diameter trade-off in microendoscopy via computational optrode-array microscopy. OPTICS EXPRESS 2023; 31:7505-7514. [PMID: 36859879 PMCID: PMC10018790 DOI: 10.1364/oe.478314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
High-resolution microscopy of deep tissue with large field-of-view (FOV) is critical for elucidating organization of cellular structures in plant biology. Microscopy with an implanted probe offers an effective solution. However, there exists a fundamental trade-off between the FOV and probe diameter arising from aberrations inherent in conventional imaging optics (typically, FOV < 30% of diameter). Here, we demonstrate the use of microfabricated non-imaging probes (optrodes) that when combined with a trained machine-learning algorithm is able to achieve FOV of 1x to 5x the probe diameter. Further increase in FOV is achieved by using multiple optrodes in parallel. With a 1 × 2 optrode array, we demonstrate imaging of fluorescent beads (including 30 FPS video), stained plant stem sections and stained living stems. Our demonstration lays the foundation for fast, high-resolution microscopy with large FOV in deep tissue via microfabricated non-imaging probes and advanced machine learning.
Collapse
Affiliation(s)
- Ruipeng Guo
- Department of Electrical and Computer Engineering, University of Utah, USA
| | - Reed Sorenson
- School of Biological Sciences, University of Utah, USA
| | - Robert Scharf
- Department of Electrical and Computer Engineering, University of Utah, USA
| | - Austin Koch
- Department of Electrical and Computer Engineering, University of Utah, USA
| | - Andrew Groover
- USDA Forest Service, Pacific Southwest Research Station, USA
- Department of Plant Biology, University of California Davis, USA
| | | | - Steve Blair
- Department of Electrical and Computer Engineering, University of Utah, USA
| | - Rajesh Menon
- Department of Electrical and Computer Engineering, University of Utah, USA
| |
Collapse
|