1
|
Benavides Lara J, Prakash R, Avanaki K. Assessment of a Single-Element Scanning System for Enhanced Photoacoustic Imaging of Brain Hemorrhage. JOURNAL OF BIOPHOTONICS 2025; 18:e202400153. [PMID: 39806268 PMCID: PMC11884960 DOI: 10.1002/jbio.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025]
Abstract
The use of photoacoustic brain imaging for hemorrhage detection holds significant clinical importance. This study focuses on the performance of sensitivity and detection capabilities of a single-element scanning system, considering the remarkable signal-to-noise ratio of photoacoustic signals generated by a single-element transducer. By employing blood vessel-like phantoms and ex vivo brain phantoms, we demonstrated the superior efficacy of the single-element scanning method over the transducer array system in the context of brain hemorrhage detection. This research highlights the potential for enhancing hemorrhage detection sensitivity through careful design and optimization of the proposed method, thereby increasing its viability for clinical application.
Collapse
Affiliation(s)
- Juliana Benavides Lara
- The Richard and Loan Hill Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Ravi Prakash
- The Richard and Loan Hill Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Dermatology and PediatricUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Li R, Peng T, Bai C, Wang P, Zhou M, Yu X, Min J, Yao B. Characterization of the angular memory effect of dynamic turbid media. OPTICS EXPRESS 2023; 31:27594-27603. [PMID: 37710831 DOI: 10.1364/oe.495970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
The optical angular memory effect (AME) is a basic feature of turbid media and defines the correlation of speckles when the incident light is tilted. AME based imaging through solid scattering media such as ground glass and biomedical tissue has been recently developed. However, in the case of liquid media such as turbid water or blood, the speckle pattern exhibits dynamic time-varying characteristics, which introduces several challenges. The AME of the thick volume dynamic media is particularly different from the layer scatterers. In practice, there are more parameters, e.g., scattering particle size, shape, density, or even the illuminating beam aperture that can influence the AME range. Experimental demonstration of AME phenomenon in liquid dynamic media and confirm the distinctions will contribution to complete the AME theory. In this paper, a dual-polarization speckle detection setup was developed to characterize the AME of dynamic turbid media, where two orthogonal polarized beams were employed for simultaneous detection by a single CCD. The AME of turbid water, milk and blood were measured. The influence of thickness, concentration, particle size and shape, and beam diameter were analyzed. The AME increasement of upon the decrease of beam diameter was tested and verified. The results demonstrate the feasibility of this method for investigating the AME phenomenon and provide guidance for AME based imaging through scattering media.
Collapse
|
3
|
Luo J, Liu Y, Wu D, Xu X, Shao L, Feng Y, Pan J, Zhao J, Shen Y, Li Z. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. SCIENCE ADVANCES 2022; 8:eadd9158. [PMID: 36525498 PMCID: PMC11580674 DOI: 10.1126/sciadv.add9158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Focusing light deep inside live scattering tissue promises to revolutionize biophotonics by enabling deep tissue noninvasive optical imaging, manipulation, and therapy. By combining with guide stars, wavefront shaping is emerging as a powerful tool to make scattering media optically transparent. However, for in vivo biomedical applications, the speeds of existing techniques are still too slow to accommodate the fast speckle decorrelation of live tissue. To address this key bottleneck, we develop a quaternary phase encoding scheme to enable single-exposure time-reversed ultrasonically encode optical focusing with full-phase modulations. Specifically, we focus light inside dynamic scattering media with an average mode time down to 29 ns, which indicates that more than 104 effective spatial modes can be controlled within 1 millisecond. With this technique, we demonstrate in vivo light focusing in between a highly opaque adult zebrafish of 5.1 millimeters in thickness and a ground glass diffuser. Our work presents an important step toward in vivo deep tissue applications of wavefront shaping.
Collapse
Affiliation(s)
- Jiawei Luo
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Daixuan Wu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lijie Shao
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuanhua Feng
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhao
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
4
|
Cheng Z, Wang LV. Focusing light into scattering media with ultrasound-induced field perturbation. LIGHT, SCIENCE & APPLICATIONS 2021; 10:159. [PMID: 34341328 PMCID: PMC8329210 DOI: 10.1038/s41377-021-00605-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/08/2023]
Abstract
Focusing light into scattering media, although challenging, is highly desirable in many realms. With the invention of time-reversed ultrasonically encoded (TRUE) optical focusing, acousto-optic modulation was demonstrated as a promising guidestar mechanism for achieving noninvasive and addressable optical focusing into scattering media. Here, we report a new ultrasound-assisted technique, ultrasound-induced field perturbation optical focusing, abbreviated as UFP. Unlike in conventional TRUE optical focusing, where only the weak frequency-shifted first-order diffracted photons due to acousto-optic modulation are useful, here UFP leverages the brighter zeroth-order photons diffracted by an ultrasonic guidestar as information carriers to guide optical focusing. We find that the zeroth-order diffracted photons, although not frequency-shifted, do have a field perturbation caused by the existence of the ultrasonic guidestar. By detecting and time-reversing the differential field of the frequency-unshifted photons when the ultrasound is alternately ON and OFF, we can focus light to the position where the field perturbation occurs inside the scattering medium. We demonstrate here that UFP optical focusing has superior performance to conventional TRUE optical focusing, which benefits from the more intense zeroth-order photons. We further show that UFP optical focusing can be easily and flexibly developed into double-shot realization or even single-shot realization, which is desirable for high-speed wavefront shaping. This new method upsets conventional thinking on the utility of an ultrasonic guidestar and broadens the horizon of light control in scattering media. We hope that it provides a more efficient and flexible mechanism for implementing ultrasound-guided wavefront shaping.
Collapse
Affiliation(s)
- Zhongtao Cheng
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Mididoddi CK, Lennon RA, Li S, Phillips DB. High-fidelity off-axis digital optical phase conjugation with transmission matrix assisted calibration. OPTICS EXPRESS 2020; 28:34692-34705. [PMID: 33182931 DOI: 10.1364/oe.409226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The spatial information carried by light is scrambled when it propagates through a scattering medium, such as frosted glass, biological tissue, turbulent air, or multimode optical fibres. Digital optical phase conjugation (DOPC) is a technique that 'pre-aberrates' an illuminating wavefront to compensate for scatterer induced distortion. DOPC systems act as phase-conjugate mirrors: they require a camera to holographically record a distorted wavefront emanating from the scatterer and a spatial light modulator (SLM) to synthesize a phase conjugate of the measured wavefront, which is sent back through the scatterer thus creating a time-reversed copy of the original optical field. High-fidelity DOPC can be technically challenging to achieve as it typically requires pixel-perfect alignment between the camera and SLM. Here we describe a DOPC system in which the normally stringent alignment criteria are relaxed. In our system the SLM and camera are placed in-line in the same optical path from the sample, and the SLM is used in an off-axis configuration. This means high-precision alignment can be achieved by measurement of the transmission matrix (TM) mapping optical fields from the SLM to the camera and vice-versa, irrespective of their relative position. The TM also absorbs and removes other aberrations in the optical system, such as the curvature of the SLM and camera chips. Using our system we demonstrate high-fidelity focussing of light through two ground glass diffusers with a peak-intensity to mean-background ratio of ∼700. We provide a step-by-step guide detailing how to align this system and discuss the trade-offs with alternative configurations. We also describe how our setup can be used as a 'single-pixel camera' based DOPC system, offering potential for DOPC at wavelengths in which cameras are not available or are prohibitively expensive.
Collapse
|
6
|
Liu Y, Cao R, Xu J, Ruan H, Yang C. Imaging through highly scattering human skulls with ultrasound-modulated optical tomography. OPTICS LETTERS 2020; 45:2973-2976. [PMID: 32479436 DOI: 10.1364/ol.390920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Advances in human brain imaging technologies are critical to understanding how the brain works and the diagnosis of brain disorders. Existing technologies have different drawbacks, and the human skull poses a great challenge for pure optical and ultrasound imaging technologies. Here we demonstrate the feasibility of using ultrasound-modulated optical tomography, a hybrid technology that combines both light and sound, to image through human skulls. Single-shot off-axis holography was used to measure the field of the ultrasonically tagged light. This Letter paves the way for imaging the brain noninvasively through the skull, with optical contrast and a higher spatial resolution than that of diffuse optical tomography.
Collapse
|
7
|
Yang J, Li L, Li J, Cheng Z, Liu Y, Wang LV. Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting. ACS PHOTONICS 2020; 7:837-844. [PMID: 34113691 PMCID: PMC8188831 DOI: 10.1021/acsphotonics.0c00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Focusing light inside live tissue by digital optical phase conjugation (DOPC) has been intensively investigated due to its potential biomedical applications in deep-tissue imaging, optogenetics, microsurgery, and phototherapy. However, fast physiological motions in a live animal, such as blood flow and respiratory motions, produce undesired photon perturbation and thus inevitably deteriorate the performance of light focusing. Here, we develop a photon-frequency-shifting DOPC method to fight against fast physiological motions by switching the states of a guide star at a distinctive frequency. Therefore, the photons tagged by the guide star are well detected at the specific frequency, separating them from the photons perturbed by fast motions. Light focusing was demonstrated in both phantoms in vitro and mice in vivo with substantially improved focusing contrast. This work puts a new perspective on light focusing inside live tissue and promises wide biomedical applications.
Collapse
Affiliation(s)
- Jiamiao Yang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jingwei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Present address: Centre for Optical and Electromagnetic Research, Chinese National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Zhongtao Cheng
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Ishijima A, Yagyu U, Kitamura K, Tsukamoto A, Sakuma I, Nakagawa K. Nonlinear photoacoustic waves for light guiding to deep tissue sites. OPTICS LETTERS 2019; 44:3006-3009. [PMID: 31199367 DOI: 10.1364/ol.44.003006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Light scattering by tissues limits performance in biological sensing or stimulation. Here we present a photoacoustic technique that increases light transmittance by one order of magnitude and enables light localization in deep tissue. Laser-induced nonlinear acoustic waves are utilized to produce a high refractive index contrast in scattering medium without high-intensity pressure. The size of guiding area is around 60 μm, which is equivalent or smaller than the diameter of multimode fibers. To show potential use in biomedical fields, we performed light guiding and imaging of fluorescence, through swine tissues with thickness more than 1 mm.
Collapse
|
9
|
Yang J, Li J, He S, Wang LV. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation. OPTICA 2019; 6:250-256. [PMID: 32025534 PMCID: PMC7002031 DOI: 10.1364/optica.6.000250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/29/2019] [Indexed: 05/24/2023]
Abstract
Focusing light inside scattering media by optical phase conjugation has been intensively investigated due to its potential applications, such as in deep tissue imaging. However, no existing physical models explain the impact of the various factors on the focusing performance inside a dynamic scattering medium. Here, we establish an angular- spectrum model to trace the field propagation during the entire optical phase conjugation process in the presence of scattering media. By incorporating fast decorrelation components, the model enables us to investigate the com- petition between the guide star and fast tissue motions for photon tagging. Other factors affecting the focusing performance are also analyzed via the model. As a proof of concept, we experimentally verify our model in the case of focusing light through dynamic scattering media. This angular-spectrum model allows analysis of a series of scattering events in highly scattering media and benefits related applications.
Collapse
Affiliation(s)
- Jiamiao Yang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jingwei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Centre for Optical and Electromagnetic Research, Chinese National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Sailing He
- Centre for Optical and Electromagnetic Research, Chinese National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Hemphill AS, Shen Y, Hwang J, Wang LV. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30156064 PMCID: PMC6444113 DOI: 10.1117/1.jbo.24.3.031004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/06/2018] [Indexed: 05/23/2023]
Abstract
Digital optical phase conjugation (DOPC) enables many optical applications by permitting focusing of light through scattering media. However, DOPC systems require precise alignment of all optical components, particularly of the spatial light modulator (SLM) and camera, in order to accurately record the wavefront and perform playback through the use of time-reversal symmetry. We present a digital compensation technique to optimize the alignment of the SLM in five degrees of freedom, permitting focusing through thick scattering media with a thickness of 5 mm and transport scattering coefficient of 2.5 mm - 1 while simultaneously improving focal quality, as quantified by the peak-to-background ratio, by several orders of magnitude over an unoptimized alignment.
Collapse
Affiliation(s)
- Ashton S. Hemphill
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Yuecheng Shen
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| | - Jeeseong Hwang
- National Institute of Standards and Technology, Quantum Electromagnetics Division, Boulder, Colorado, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
11
|
Ma C, Di J, Zhang Y, Li P, Xiao F, Liu K, Bai X, Zhao J. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation. OPTICS LETTERS 2018; 43:3333-3336. [PMID: 30004499 DOI: 10.1364/ol.43.003333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The digital optical phase conjugation (DOPC) technique is being actively developed for optical focusing and imaging through or inside complex media. Due to its time-reversal nature, DOPC has been exploited to regenerate different intensity targets. However, whether the targets with three-dimensional information through complex media could be recovered has not been experimentally demonstrated, to the best of our knowledge. Here, we present a method to regenerate structured laser beams based on DOPC. Although only the phase of the original scattered wave is time reversed, the reconstruction of a quasi-Bessel beam and vortex beams through a multimode fiber (MMF) is demonstrated. The regenerated quasi-Bessel beam shows the features of sub-diffraction focusing and a longer depth of field with respect to a Gaussian beam. Moreover, the reconstruction of vortex beams shows the fidelity of DOPC both in amplitude and phase, which is demonstrated for the first time, to the best of our knowledge. We also prove that the reconstruction results of DOPC through the MMF are indeed phase conjugate to the original targets. We expect that these results could be useful in super-resolution imaging and optical micromanipulation through complex media, and further pave the way for achieving three-dimensional imaging based on DOPC.
Collapse
|
12
|
Yu Z, Huangfu J, Zhao F, Xia M, Wu X, Niu X, Li D, Lai P, Wang D. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media. Sci Rep 2018; 8:2927. [PMID: 29440682 PMCID: PMC5811554 DOI: 10.1038/s41598-018-21258-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Manipulating and focusing light deep inside biological tissue and tissue-like complex media has been desired for long yet considered challenging. One feasible strategy is through optical wavefront engineering, where the optical scattering-induced phase distortions are time reversed or pre-compensated so that photons travel along different optical paths interfere constructively at the targeted position within a scattering medium. To define the targeted position, an internal guidestar is needed to guide or provide a feedback for wavefront engineering. It could be injected or embedded probes such as fluorescence or nonlinear microspheres, ultrasonic modulation, as well as absorption perturbation. Here we propose to use a magnetically controlled optical absorbing microsphere as the internal guidestar. Using a digital optical phase conjugation system, we obtained sharp optical focusing within scattering media through time-reversing the scattered light perturbed by the magnetic microsphere. Since the object is magnetically controlled, dynamic optical focusing is allowed with a relatively large field-of-view by scanning the magnetic field externally. Moreover, the magnetic microsphere can be packaged with an organic membrane, using biological or chemical means to serve as a carrier. Therefore, the technique may find particular applications for enhanced targeted drug delivery, and imaging and photoablation of angiogenic vessels in tumours.
Collapse
Affiliation(s)
- Zhipeng Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Jiangtao Huangfu
- Laboratory of Applied Research on Electromagnetics (ARE), Zhejiang University, Hangzhou, 310027, China
| | - Fangyuan Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Meiyun Xia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Xi Wu
- Laboratory of Applied Research on Electromagnetics (ARE), Zhejiang University, Hangzhou, 310027, China
| | - Xufeng Niu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Deyu Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| | - Daifa Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China.
| |
Collapse
|
13
|
Liu Y, Shen Y, Ruan H, Brodie FL, Wong TTW, Yang C, Wang LV. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-4. [PMID: 29322749 PMCID: PMC5762002 DOI: 10.1117/1.jbo.23.1.010501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.
Collapse
Affiliation(s)
- Yan Liu
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Yuecheng Shen
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Haowen Ruan
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Frank L. Brodie
- University of California, San Francisco, Department of Ophthalmology, San Francisco, California, United States
| | - Terence T. W. Wong
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| |
Collapse
|
14
|
Wavefront Shaping and Its Application to Enhance Photoacoustic Imaging. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since its introduction to the field in mid-1990s, photoacoustic imaging has become a fast-developing biomedical imaging modality with many promising potentials. By converting absorbed diffused light energy into not-so-diffused ultrasonic waves, the reconstruction of the ultrasonic waves from the targeted area in photoacoustic imaging leads to a high-contrast sensing of optical absorption with ultrasonic resolution in deep tissue, overcoming the optical diffusion limit from the signal detection perspective. The generation of photoacoustic signals, however, is still throttled by the attenuation of photon flux due to the strong diffusion effect of light in tissue. Recently, optical wavefront shaping has demonstrated that multiply scattered light could be manipulated so as to refocus inside a complex medium, opening up new hope to tackle the fundamental limitation. In this paper, the principle and recent development of photoacoustic imaging and optical wavefront shaping are briefly introduced. Then we describe how photoacoustic signals can be used as a guide star for in-tissue optical focusing, and how such focusing can be exploited for further enhancing photoacoustic imaging in terms of sensitivity and penetration depth. Finally, the existing challenges and further directions towards in vivo applications are discussed.
Collapse
|
15
|
Ruan H, Brake J, Robinson JE, Liu Y, Jang M, Xiao C, Zhou C, Gradinaru V, Yang C. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. SCIENCE ADVANCES 2017; 3:eaao5520. [PMID: 29226248 PMCID: PMC5722648 DOI: 10.1126/sciadv.aao5520] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/08/2017] [Indexed: 05/22/2023]
Abstract
Noninvasive light focusing deep inside living biological tissue has long been a goal in biomedical optics. However, the optical scattering of biological tissue prevents conventional optical systems from tightly focusing visible light beyond several hundred micrometers. The recently developed wavefront shaping technique time-reversed ultrasonically encoded (TRUE) focusing enables noninvasive light delivery to targeted locations beyond the optical diffusion limit. However, until now, TRUE focusing has only been demonstrated inside nonliving tissue samples. We present the first example of TRUE focusing in 2-mm-thick living brain tissue and demonstrate its application for optogenetic modulation of neural activity in 800-μm-thick acute mouse brain slices at a wavelength of 532 nm. We found that TRUE focusing enabled precise control of neuron firing and increased the spatial resolution of neuronal excitation fourfold when compared to conventional lens focusing. This work is an important step in the application of TRUE focusing for practical biomedical uses.
Collapse
Affiliation(s)
- Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Joshua Brake
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - J. Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yan Liu
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mooseok Jang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chunyi Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Hemphill AS, Shen Y, Liu Y, Wang LV. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. APPLIED PHYSICS LETTERS 2017; 111:221109. [PMID: 29249832 PMCID: PMC5709093 DOI: 10.1063/1.5009113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 05/28/2023]
Abstract
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Collapse
Affiliation(s)
| | - Yuecheng Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
17
|
Hemphill AS, Shen Y, Liu Y, Wang LV. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. APPLIED PHYSICS LETTERS 2017. [PMID: 29249832 DOI: 10.1063/1.4994311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Collapse
Affiliation(s)
| | - Yuecheng Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
18
|
Qureshi MM, Brake J, Jeon HJ, Ruan H, Liu Y, Safi AM, Eom TJ, Yang C, Chung E. In vivo study of optical speckle decorrelation time across depths in the mouse brain. BIOMEDICAL OPTICS EXPRESS 2017; 8:4855-4864. [PMID: 29188086 PMCID: PMC5695936 DOI: 10.1364/boe.8.004855] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 05/11/2023]
Abstract
The strong optical scattering of biological tissue confounds our ability to focus light deeply into the brain beyond depths of a few hundred microns. This challenge can be potentially overcome by exploiting wavefront shaping techniques which allow light to be focused through or inside scattering media. However, these techniques require the scattering medium to be static, as changes in the arrangement of the scatterers between the wavefront recording and playback steps reduce the fidelity of the focus that is formed. Furthermore, as the thickness of the scattering medium increases, the influence of the dynamic nature becomes more severe due to the growing number of scattering events experienced by each photon. In this paper, by examining the scattering dynamics in the mouse brain in vivo via multispeckle diffusing wave spectroscopy (MSDWS) using a custom fiber probe that simulates a point-like source within the brain, we investigate the relationship between this decorrelation time and the depth of the point-like light source inside the living mouse brain at depths up to 3.2 mm.
Collapse
Affiliation(s)
- Muhammad Mohsin Qureshi
- Department of Biomedical Science and Engineering, Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, South Korea
- Co-first authors with equal contribution
| | - Joshua Brake
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Co-first authors with equal contribution
| | - Hee-Jae Jeon
- Department of Biomedical Science and Engineering, Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, South Korea
| | - Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Abdul Mohaimen Safi
- Department of Biomedical Science and Engineering, Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, South Korea
| | - Tae Joong Eom
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, South Korea
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, South Korea
| |
Collapse
|
19
|
Liu Y, Ma C, Shen Y, Shi J, Wang LV. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. OPTICA 2017; 4:280-288. [PMID: 28815194 PMCID: PMC5555171 DOI: 10.1364/optica.4.000280] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6 × 105 optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy.
Collapse
Affiliation(s)
- Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Cheng Ma
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Yuecheng Shen
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Junhui Shi
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
20
|
Shen Y, Liu Y, Ma C, Wang LV. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media. OPTICA 2017; 4:97-102. [PMID: 28670607 PMCID: PMC5493046 DOI: 10.1364/optica.4.000097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optical time-reversal techniques are being actively developed to focus light through or inside opaque scattering media. When applied to biological tissue, these techniques promise to revolutionize biophotonics by enabling deep-tissue non-invasive optical imaging, optogenetics, optical tweezing, and phototherapy. In all previous optical time-reversal experiments, the scattered light field was well-sampled during wavefront measurement and wavefront reconstruction, following the Nyquist sampling criterion. Here, we overturn this conventional practice by demonstrating that even when the scattered field is under-sampled, light can still be focused through or inside scattering media. Even more surprisingly, we show both theoretically and experimentally that the focus achieved by under-sampling can be one order of magnitude brighter than that achieved under the well-sampling conditions used in previous works, where 3×3 to 5×5 pixels were used to sample one speckle grain on average. Moreover, sub-Nyquist sampling improves the signal-to-noise ratio and the collection efficiency of the scattered light. We anticipate that this newly explored under-sampling scheme will transform the understanding of optical time reversal and boost the performance of optical imaging, manipulation, and communication through opaque scattering media.
Collapse
Affiliation(s)
- Yuecheng Shen
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| | - Cheng Ma
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| |
Collapse
|
21
|
Hemphill AS, Tay JW, Wang LV. Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:121502. [PMID: 27626770 PMCID: PMC5019185 DOI: 10.1117/1.jbo.21.12.121502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/17/2016] [Indexed: 05/08/2023]
Abstract
One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit (typically ?1??mm). To overcome this challenge, wavefront shaping techniques that use a spatial light modulator (SLM) to correct the phase of the incident wavefront have recently been developed. These techniques are able to focus light through scattering media beyond the optical diffusion limit. However, the low speeds of typically used liquid crystal SLMs limit the focusing speed. Here, we present a method using a digital micromirror device (DMD) and an electro-optic modulator (EOM) to measure the scattering-induced aberrations, and using a liquid crystal SLM to apply the correction to the illuminating wavefront. By combining phase modulation from an EOM with the DMD’s ability to provide selective illumination, we exploit the DMD’s higher refresh rate for phase measurement. We achieved focusing through scattering media in less than 8 ms, which is sufficiently short for certain in vivo applications, as it is comparable to the speckle correlation time of living tissue.
Collapse
Affiliation(s)
- Ashton S. Hemphill
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Jian Wei Tay
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, Saint Louis, Missouri 63130, United States
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
22
|
Shen Y, Liu Y, Ma C, Wang LV. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:85001. [PMID: 27533439 PMCID: PMC4982119 DOI: 10.1117/1.jbo.21.8.085001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 05/19/2023]
Abstract
Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (∼100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.
Collapse
Affiliation(s)
- Yuecheng Shen
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yan Liu
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Cheng Ma
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
23
|
Li Y, Liu R, Wang Y, Wen D, Meng L, Lu J, Li P. Detecting relative speed changes of moving objects through scattering medium by using wavefront shaping and laser speckle contrast analysis. OPTICS EXPRESS 2016; 24:8382-8390. [PMID: 27137275 DOI: 10.1364/oe.24.008382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Imaging through a scattering medium has been a main challenge in modern optical imaging field. Recently, imaging through scattering medium based on wavefront shaping has been reported. However, it has not been clearly investigated to apply the optical memory effect based iterative wavefront shaping technique in speed estimation of a moving object through scattering medium. Here, we proposed to combine the iterative wavefront shaping technique with laser speckle contrast analysis method to detect the relative speed changes of moving objects through scattering medium. Phantom experiments were performed to validate our method.
Collapse
|
24
|
Thompson JV, Throckmorton GA, Hokr BH, Yakovlev VV. Wavefront shaping enhanced Raman scattering in a turbid medium. OPTICS LETTERS 2016; 41:1769-72. [PMID: 27082341 DOI: 10.1364/ol.41.001769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Spontaneous Raman scattering is a powerful tool for chemical sensing and imaging but suffers from a weak signal. In this Letter, we present an application of adaptive optics to enhance the Raman scattering signal detected through a turbid, optically thick material. This technique utilizes recent advances in wavefront shaping techniques for focusing light through a turbid media and applies them to chemical detection to achieve a signal enhancement with little sacrifice to the overall simplicity of the experimental setup. With this technique, we demonstrate an enhancement in the Raman signal from titanium dioxide particles through a highly scattering material. This technique may pave the way to label-free tracking using the optical memory effect.
Collapse
|
25
|
Liu Y, Ma C, Shen Y, Wang LV. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media. OPTICS LETTERS 2016; 41:1321-4. [PMID: 27192226 PMCID: PMC4874255 DOI: 10.1364/ol.41.001321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Time-reversed ultrasonically encoded optical focusing measures the wavefront of ultrasonically tagged light, and then phase conjugates the tagged light back to the ultrasonic focus, thus focusing light deep inside the scattering media. In previous works, the speed of wavefront measurement was limited by the low frame rates of conventional cameras. In addition, these cameras used most of their bits to represent an informationless background when the signal-to-background ratio was low, resulting in extremely low efficiencies in the use of bits. Here, using a lock-in camera, we increase the bit efficiency and reduce the data transfer load by digitizing only the signal after rejecting the background. With this camera, we obtained the wavefront of ultrasonically tagged light after a single frame of measurement taken within 0.3 ms, and focused light in between two diffusers. The phase sensitivity has reached 0.51 rad even when the SBR is 6×10-4.
Collapse
|
26
|
Shen Y, Liu Y, Ma C, Wang LV. Focusing light through scattering media by full-polarization digital optical phase conjugation. OPTICS LETTERS 2016; 41:1130-3. [PMID: 26977651 PMCID: PMC4795172 DOI: 10.1364/ol.41.001130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single-polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first, to the best of our knowledge, full-polarization DOPC system that records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm-thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase-conjugation fidelity.
Collapse
|
27
|
Bossy E, Gigan S. Photoacoustics with coherent light. PHOTOACOUSTICS 2016; 4:22-35. [PMID: 27069874 PMCID: PMC4811919 DOI: 10.1016/j.pacs.2016.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/28/2016] [Indexed: 05/16/2023]
Abstract
Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches. In this article, we first provide an introduction to the relevant concepts in the field, and then review the recent works showing that it is possible to exploit the coherence of light in conjunction with photoacoustics. We illustrate how the photoacoustic effect can be used as a powerful feedback mechanism for optical wavefront shaping in complex media, and conversely show how the coherence of light can be exploited to enhance photoacoustic imaging, for instance in terms of spatial resolution or for designing minimally invasive endoscopic devices. Finally, we discuss the current challenges and perspectives down the road towards practical applications in the field of photoacoustic imaging.
Collapse
Affiliation(s)
- Emmanuel Bossy
- ESPCI Paris, PSL Research University, CNRS, INSERM, Institut Langevin, 1 rue Jussieu, 75005 Paris, France
- Optics Laboratory and Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond 75005 Paris, France
| |
Collapse
|
28
|
Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nat Commun 2015; 6:8968. [PMID: 26597439 PMCID: PMC4673873 DOI: 10.1038/ncomms9968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022] Open
Abstract
Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubble encoded (TRUME) optical focusing, which can focus light with improved efficiency and sub-ultrasound wavelength resolution. This method ultrasonically destroys microbubbles, and measures the wavefront change to compute and render a suitable time-reversed wavefront solution for focusing. We demonstrate that the TRUME technique can create an optical focus at the site of bubble destruction with a size of ∼2 μm. We further demonstrate a twofold enhancement in addressable focus resolution in a microbubble aggregate target by exploiting the nonlinear pressure-to-destruction response of the microbubbles. The reported technique provides a deep tissue-focusing solution with high efficiency, resolution, and specificity. Focusing light inside biological tissue is challenging due to its strong scattering nature. Here, the authors develop a technique that uses ultrasonically destroyed microbubbles to assist in the computation of a wavefront solution which forms optical foci at the microbubble destruction sites.
Collapse
Affiliation(s)
- Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Mooseok Jang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| |
Collapse
|