1
|
Savatović S, Laundon D, De Marco F, Riedel M, Hammel JU, Busse M, Salomé M, Pascolo L, Zanette I, Lewis RM, Herzen J, Thibault P. High-resolution X-ray phase-contrast tomography of human placenta with different wavefront markers. Sci Rep 2025; 15:2131. [PMID: 39820007 PMCID: PMC11739398 DOI: 10.1038/s41598-025-85105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Phase-contrast micro-tomography ([Formula: see text]CT) with synchrotron radiation can aid in the differentiation of subtle density variations in weakly absorbing soft tissue specimens. Modulation-based imaging (MBI) extracts phase information from the distortion of reference patterns, generated by periodic or randomly structured wavefront markers (e.g., gratings or sandpaper). The two approaches have already found application for the virtual inspection of biological samples. Here, we perform high-resolution [Formula: see text]CT scans of an unstained human placenta specimen, using MBI with both a 2D grating and sandpaper as modulators, as well as conventional propagation-based imaging (PBI). The 3D virtual representation of placenta offers a valuable tool for analysing its intricate branching villous network and vascular structure, providing new insights into its complex architecture. Within this study, we assess reconstruction quality achieved with all three evaluated phase-contrast methods. Both MBI datasets are processed with the Unified Modulated Pattern Analysis (UMPA) model, a pattern-matching algorithm. In order to evaluate the benefits and suitability of MBI for virtual histology, we discuss how the complexities of the technique influence image quality and correlate the obtained volumes to 2D techniques, such as conventional histology and X-ray fluorescence (XRF) elemental maps.
Collapse
Affiliation(s)
- Sara Savatović
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany.
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Department of Physics, University of Trieste, 34127, Trieste, Italy.
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy.
| | - Davis Laundon
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, University Rd, Southampton, SO17 1BJ, UK
| | - Fabio De Marco
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy
| | - Mirko Riedel
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Madleen Busse
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Murielle Salomé
- ESRF - The European Synchrotron Radiation Facility, 38043, Grenoble, France
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | - Irene Zanette
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy
| | - Rohan M Lewis
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, University Rd, Southampton, SO17 1BJ, UK
| | - Julia Herzen
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Pierre Thibault
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Italy
| |
Collapse
|
2
|
Doherty A, Buchanan I, Roche i Morgó O, Astolfo A, Savvidis S, Gerli MFM, Citro A, Olivo A, Endrizzi M. Hybrid dark-field and attenuation contrast retrieval for laboratory-based X-ray tomography. OPTICA 2024; 11:1603-1613. [PMID: 39735734 PMCID: PMC11674740 DOI: 10.1364/optica.525760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 12/31/2024]
Abstract
X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample. This fuses attenuation and dark-field signals, enabling the reconstruction of a unified three-dimensional volume. Notably, our method can obtain dark-field contrast from a single exposure and employs conventional back projection algorithms for reconstruction. Our approach is based on the assumption of a macroscopically homogeneous material, which we validate through experiments on phantoms and on biological tissue samples. The methodology is implemented on a laboratory-based, rotating anode X-ray tube system without the need for coherent radiation or a high-resolution detector. Utilizing this system with streamlined data acquisition enables expedited scanning while maximizing dose efficiency. These attributes are crucial in time- and dose-sensitive medical imaging applications and unlock the ability of dark-field contrast with high-throughput lab-based tomography. We believe that the proposed approach can be extended across X-ray dark-field imaging implementations beyond tomography, spanning fast radiography, directional dark-field imaging, and compatibility with pulsed X-ray sources.
Collapse
Affiliation(s)
- Adam Doherty
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- X-ray Microscopy and Tomography Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ian Buchanan
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Oriol Roche i Morgó
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- X-ray Microscopy and Tomography Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alberto Astolfo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Mattia F. M. Gerli
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, NW3 2PF, London, UK
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- X-ray Microscopy and Tomography Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
3
|
Zandarco S, Günther B, Riedel M, Breitenhuber G, Kirst M, Achterhold K, Pfeiffer F, Herzen J. Speckle tracking phase-contrast computed tomography at an inverse Compton X-ray source. OPTICS EXPRESS 2024; 32:28472-28488. [PMID: 39538663 DOI: 10.1364/oe.528701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 11/16/2024]
Abstract
Speckle-based X-ray imaging (SBI) is a phase-contrast method developed at and for highly coherent X-ray sources, such as synchrotrons, to increase the contrast of weakly absorbing objects. Consequently, it complements the conventional attenuation-based X-ray imaging. Meanwhile, attempts to establish SBI at less coherent laboratory sources have been performed, ranging from liquid metal-jet X-ray sources to microfocus X-ray tubes. However, their lack of coherence results in interference fringes not being resolved. Therefore, algorithms were developed which neglect the interference effects. Here, we demonstrate phase-contrast computed tomography employing SBI in a laboratory-setting with an inverse Compton X-ray source. In this context, we investigate and compare also the performance of the at synchrotron conventionally used phase-retrieval algorithms for SBI, unified modulated pattern analysis (UMPA) with a phase-retrieval method developed for low coherence systems (LCS). We successfully retrieve a full computed tomography in a phantom as well as in biological specimens, such as larvae of the greater wax moth (Galleria mellonella), a model system for studies of pathogens and infections. In this context, we additionally demonstrate quantitative phase-contrast computed tomography using SBI at a low coherent set-up.
Collapse
|
4
|
Smith R, Morgan K, McCarron A, Cmielewski P, Reyne N, Parsons D, Donnelley M. Ultra-fast in vivodirectional dark-field x-ray imaging for visualising magnetic control of particles for airway gene delivery. Phys Med Biol 2024; 69:105025. [PMID: 38640914 DOI: 10.1088/1361-6560/ad40f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective.Magnetic nanoparticles can be used as a targeted delivery vehicle for genetic therapies. Understanding how they can be manipulated within the complex environment of live airways is key to their application to cystic fibrosis and other respiratory diseases.Approach.Dark-field x-ray imaging provides sensitivity to scattering information, and allows the presence of structures smaller than the detector pixel size to be detected. In this study, ultra-fast directional dark-field synchrotron x-ray imaging was utlilised to understand how magnetic nanoparticles move within a live, anaesthetised, rat airway under the influence of static and moving magnetic fields.Main results.Magnetic nanoparticles emerging from an indwelling tracheal cannula were detectable during delivery, with dark-field imaging increasing the signal-to-noise ratio of this event by 3.5 times compared to the x-ray transmission signal. Particle movement as well as particle retention was evident. Dynamic magnetic fields could manipulate the magnetic particlesin situ. Significance.This is the first evidence of the effectiveness ofin vivodark-field imaging operating at these spatial and temporal resolutions, used to detect magnetic nanoparticles. These findings provide the basis for further development toward the effective use of magnetic nanoparticles, and advance their potential as an effective delivery vehicle for genetic agents in the airways of live organisms.
Collapse
Affiliation(s)
- Ronan Smith
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Kaye Morgan
- Department of Physics, Monash University, Wellington Road, Melbourne, Australia
| | - Alexandra McCarron
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Patricia Cmielewski
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Nicole Reyne
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| |
Collapse
|
5
|
Savatović S, Zdora MC, De Marco F, Bikis C, Olbinado M, Rack A, Müller B, Thibault P, Zanette I. Multi-resolution X-ray phase-contrast and dark-field tomography of human cerebellum with near-field speckles. BIOMEDICAL OPTICS EXPRESS 2024; 15:142-161. [PMID: 38223169 PMCID: PMC10783905 DOI: 10.1364/boe.502664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.
Collapse
Affiliation(s)
- Sara Savatović
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Marie-Christine Zdora
- Department of Biomedical Engineering, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Fabio De Marco
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Christos Bikis
- Psychiatric Hospital in Winterthur, Wieshofstrasse 102, 8408 Winterthur, Switzerland
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
| | - Margie Olbinado
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Rack
- ESRF – The European Synchrotron, CS40220, CEDEX 09, 38043 Grenoble, France
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
| | - Pierre Thibault
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| | - Irene Zanette
- Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
| |
Collapse
|
6
|
How YY, Paganin DM, Morgan KS. On the quantification of sample microstructure using single-exposure x-ray dark-field imaging via a single-grid setup. Sci Rep 2023; 13:11001. [PMID: 37419926 PMCID: PMC10329004 DOI: 10.1038/s41598-023-37334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
The size of the smallest detectable sample feature in an x-ray imaging system is usually restricted by the spatial resolution of the system. This limitation can now be overcome using the diffusive dark-field signal, which is generated by unresolved phase effects or the ultra-small-angle x-ray scattering from unresolved sample microstructures. A quantitative measure of this dark-field signal can be useful in revealing the microstructure size or material for medical diagnosis, security screening and materials science. Recently, we derived a new method to quantify the diffusive dark-field signal in terms of a scattering angle using a single-exposure grid-based approach. In this manuscript, we look at the problem of quantifying the sample microstructure size from this single-exposure dark-field signal. We do this by quantifying the diffusive dark-field signal produced by 5 different sizes of polystyrene microspheres, ranging from 1.0 to 10.8 µm, to investigate how the strength of the extracted dark-field signal changes with the sample microstructure size, [Formula: see text]. We also explore the feasibility of performing single-exposure dark-field imaging with a simple equation for the optimal propagation distance, given microstructure with a specific size and thickness, and show consistency between this model and experimental data. Our theoretical model predicts that the dark-field scattering angle is inversely proportional to [Formula: see text], which is also consistent with our experimental data.
Collapse
Affiliation(s)
- Ying Ying How
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia.
| | - David M Paganin
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Kaye S Morgan
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
7
|
Riedel M, Taphorn K, Gustschin A, Busse M, Hammel JU, Moosmann J, Beckmann F, Fischer F, Thibault P, Herzen J. Comparing x-ray phase-contrast imaging using a Talbot array illuminator to propagation-based imaging for non-homogeneous biomedical samples. Sci Rep 2023; 13:6996. [PMID: 37117518 PMCID: PMC10144904 DOI: 10.1038/s41598-023-33788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Phase-contrast computed tomography can visualize soft tissue samples with high contrast. At coherent sources, propagation-based imaging (PBI) techniques are among the most common, as they are easy to implement and produce high-resolution images. Their downside is a low degree of quantitative data due to simplifying assumptions of the sample properties in the reconstruction. These assumptions can be avoided, by using quantitative phase-contrast techniques as an alternative. However, these often compromise spatial resolution and require complicated setups. In order to overcome this limitation, we designed and constructed a new imaging setup using a 2D Talbot array illuminator as a wavefront marker and speckle-based imaging phase-retrieval techniques. We developed a post-processing chain that can compensate for wavefront marker drifts and that improves the overall sensitivity. By comparing two measurements of biomedical samples, we demonstrate that the spatial resolution of our setup is comparable to the one of PBI scans while being able to successfully image a sample that breaks the typical homogeneity assumption used in PBI.
Collapse
Affiliation(s)
- Mirko Riedel
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany.
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany.
| | - Kirsten Taphorn
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Alex Gustschin
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Madleen Busse
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Joerg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Florian Fischer
- Institute of Forensic Medicine, Ludwig-Maximilians Universitaet, Munich, Germany
| | - Pierre Thibault
- Department of Physics, University of Trieste, Trieste, Italy
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
8
|
Croughan MK, How YY, Pennings A, Morgan KS. Directional dark-field retrieval with single-grid x-ray imaging. OPTICS EXPRESS 2023; 31:11578-11597. [PMID: 37155790 DOI: 10.1364/oe.480031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Directional dark-field imaging is an emerging x-ray modality that is sensitive to unresolved anisotropic scattering from sub-pixel sample microstructures. A single-grid imaging setup can be used to capture dark-field images by looking at changes in a grid pattern projected upon the sample. By creating analytical models for the experiment, we have developed a single-grid directional dark-field retrieval algorithm that can extract dark-field parameters such as the dominant scattering direction, and the semi-major and -minor scattering angles. We show that this method is effective even in the presence of high image noise, allowing for low-dose and time-sequence imaging.
Collapse
|
9
|
De Marco F, Savatović S, Smith R, Di Trapani V, Margini M, Lautizi G, Thibault P. High-speed processing of X-ray wavefront marking data with the Unified Modulated Pattern Analysis (UMPA) model. OPTICS EXPRESS 2023; 31:635-650. [PMID: 36606998 DOI: 10.1364/oe.474794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wavefront-marking X-ray imaging techniques use e.g., sandpaper or a grating to generate intensity fluctuations, and analyze their distortion by the sample in order to retrieve attenuation, phase-contrast, and dark-field information. Phase contrast yields an improved visibility of soft-tissue specimens, while dark-field reveals small-angle scatter from sub-resolution structures. Both have found many biomedical and engineering applications. The previously developed Unified Modulated Pattern Analysis (UMPA) model extracts these modalities from wavefront-marking data. We here present a new UMPA implementation, capable of rapidly processing large datasets and featuring capabilities to greatly extend the field of view. We also discuss possible artifacts and additional new features.
Collapse
|
10
|
Schwarzenberg FL, Schütz P, Hammel JU, Riedel M, Bartl J, Bordbari S, Frank SC, Walkenfort B, Busse M, Herzen J, Lohr C, Wülfing C, Henne S. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array. Front Immunol 2022; 13:947961. [PMID: 36524111 PMCID: PMC9745095 DOI: 10.3389/fimmu.2022.947961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.
Collapse
Affiliation(s)
- Florian L. Schwarzenberg
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Paul Schütz
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Mirko Riedel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Jasmin Bartl
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Sharareh Bordbari
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Svea-Celina Frank
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Madleen Busse
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Clemens Wülfing
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Stephan Henne
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
How YY, Morgan KS. Quantifying the x-ray dark-field signal in single-grid imaging. OPTICS EXPRESS 2022; 30:10899-10918. [PMID: 35473045 DOI: 10.1364/oe.451834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
X-ray dark-field imaging reveals the sample microstructure that is unresolved when using conventional methods of x-ray imaging. In this paper, we derive a new method to extract and quantify the x-ray dark-field signal collected using a single-grid imaging set-up, and relate the signal strength to the number of sample microstructures, N. This was achieved by modelling sample-induced changes to the shadow of the upstream grid, and fitting experimental data to this model. Our results suggested that the dark-field scattering angle from our spherical microstructures deviates slightly from the theoretical model of N, which was consistent with results from other experimental methods. We believe the approach outlined here can equip quantitative dark-field imaging of small samples, particularly in cases where only one sample exposure is possible, either due to sample movement or radiation dose limitations. Future directions include an extension into directional dark-field imaging.
Collapse
|
12
|
Mikhaylov A, Zakharova M, Vlnieska V, Khanda A, Bremer S, Zuber M, Henrique Pezzin S, Kunka D. Inverted Hartmann mask made by deep X-ray lithography for single-shot multi-contrast X-ray imaging with laboratory setup. OPTICS EXPRESS 2022; 30:8494-8509. [PMID: 35299301 DOI: 10.1364/oe.452114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This paper reports on the fabrication and characterization of an inverted Hartmann mask and its application for multi-contrast X-ray imaging of polymer composite material in a laboratory setup. Hartmann masks open new possibilities for high-speed X-ray imaging, obtaining orientation-independent information on internal structures without rotating the object. The mask was manufactured with deep X-ray lithography and gold electroplating on a low-absorbing polyimide substrate. Such an approach allows us to produce gratings with a small period and high aspect ratio, leading to a higher spatial resolution and extension towards higher X-ray energies. Tuning the manufacturing process, we achieved a homogeneous patterned area without supporting structures, thus avoiding losses on visibility. We tested mask performance in a laboratory setup with a conventional flat panel detector and assessed mask imaging capabilities using a tailored phantom sample of various sizes. We performed multi-modal X-ray imaging of epoxy matrix polymer composites reinforced with glass fibers and containing microcapsules filled with a healing agent. Hartmann masks made by X-ray lithography enabled fast-tracking of structural changes in low absorbing composite materials and of a self-healing mechanism triggered by mechanical stress.
Collapse
|