1
|
Guo H, Song L, Wang X, Huang J, Zhang X, Zhang Y, Zhu W, Song W, Chen H, Bo J, Zhang P, Cao G, Luo Z. Cold adaptation of harmful dinoflagellate facilitates their poleward colonization: Insights into extracellular polymeric substances and intracellular bio-macromolecules dynamics through in-situ FTIR imaging. Int J Biol Macromol 2025; 309:143054. [PMID: 40220838 DOI: 10.1016/j.ijbiomac.2025.143054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
While higher latitudes are becoming relatively warm ecosystem for phytoplankton, the rapid and active adaptation of harmful algal cells to cold conditions also contributes to their poleward colonization, which has scarcely been studied. We examined the adaptive mechanism to cold stress in Gymnodinium catenatum, a eurythermic species that has been recently reported to spread to higher latitudes. Using the in-situ focal plane array Fourier transform infrared spectroscopy (FPA-FTIR) imaging combined with transmission electron microscopy, we demonstrated that this dinoflagellate could adapt to cold stress by establishing two cell barriers: one consisting of the massive extracellular polymeric substances (EPS) that accumulated outside the cell and the other represented by lipid phase separation within the reshaped cellular microenvironment. Two-dimensional correlation (2D-COS) spectroscopy further revealed that intracellular bio-macromolecules (lipids, proteins, and carbohydrates) were organized in an ordered and purposeful manner to resist cold. Transcriptome analysis confirmed the inhibition of nicotinamide adenine dinucleotide (NADH) dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) involved in protein and carbohydrate metabolism, in cold-treated cells. This study elucidated a flexible adaptation strategy of G. catenatum at the bio-macromolecular level and generally discussed the widespread colonization of harmful microalgae at higher latitudes.
Collapse
Affiliation(s)
- Huige Guo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Linjie Song
- Department of Colorectal and Anorectal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266001, China
| | - Xiaochen Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jieliang Huang
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - Xuhui Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wenting Zhu
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116000, China
| | - Wenpeng Song
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116000, China
| | - Hongzhe Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jun Bo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ping Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
2
|
Guo H, Wang X, Li C, Mohamed HF, Li D, Wang L, Chen H, Lin K, Huang S, Pang J, Zhang Y, Krock B, Luo Z. Ignited competition: Impact of bioactive extracellular compounds on organelle functions and photosynthetic systems in harmful algal blooms. PLANT, CELL & ENVIRONMENT 2024; 47:4615-4629. [PMID: 39047015 DOI: 10.1111/pce.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Prevalent interactions among marine phytoplankton triggered by long-range climatic stressors are well-known environmental disturbers of community structure. Dynamic response of phytoplankton physiology is likely to come from interspecies interactions rather than direct climatic effect on single species. However, studies on enigmatic interactions among interspecies, which are induced by bioactive extracellular compounds (BECs), especially between related harmful algae sharing similar shellfish toxins, are scarce. Here, we investigated how BECs provoke the interactions between two notorious algae, Alexandrium minutum and Gymnodinium catenatum, which have similar paralytic shellfish toxin (PST) profiles. Using techniques including electron microscopy and transcriptome analysis, marked disruptions in G. catenatum intracellular microenvironment were observed under BECs pressure, encompassing thylakoid membrane deformations, pyrenoid matrix shrinkage and starch sheaths disappearance. In addition, the upregulation of gene clusters responsible for photosystem-I Lhca1/4 and Rubisco were determined, leading to weaken photon captures and CO2 assimilation. The redistribution of lipids and proteins occurred at the subcellular level based on in situ focal plane array FTIR imaging approved the damages. Our findings illuminated an intense but underestimated interspecies interaction triggered by BECs, which is responsible for dysregulating photosynthesis and organelle function in inferior algae and may potentially account for fitness alteration in phytoplankton community.
Collapse
Affiliation(s)
- Huige Guo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaochen Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Changlin Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Hala F Mohamed
- Department of Botany & Microbiology, (Girls Branch), Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Dawei Li
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lianghui Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Hongzhe Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Kunning Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jinling Pang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Bernd Krock
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
3
|
Macedo LJA, Rodrigues FP, Hassan A, Máximo LNC, Zobi F, da Silva RS, Crespilho FN. Non-destructive molecular FTIR spectromicroscopy for real time assessment of redox metallodrugs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1094-1102. [PMID: 34935794 DOI: 10.1039/d1ay01198g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent emergence of FTIR spectromicroscopy (micro-FTIR) as a dynamic spectroscopy for imaging to study biological chemistry has opened new possibilities for investigating in situ drug release, redox chemistry effects on biological molecules, DNA and drug interactions, membrane dynamics, and redox reactions with proteins at the single cell level. Micro-FTIR applied to metallodrugs has been playing an important role since the last decade because of its great potential to achieve more robust and controlled pharmacological effects against several diseases, including cancer. An important aspect in the development of these drugs is to understand their cellular properties, such as uptake, accumulation, activity, and toxicity. In this review, we present the potential application of micro-FTIR and its importance for studying metal-based drugs, highlighting the perspectives of chemistry of living cells. We also emphasise bioimaging, which is of high importance to localize the cellular processes, for a proper understanding of the mechanism of action.
Collapse
Affiliation(s)
- Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Fernando P Rodrigues
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Leandro N C Máximo
- Department of Chemistry, Federal Institute of Education, Science and Technology, Goiano, Urutuai, GO 75790-000, Brazil
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
4
|
Sandt C, Borondics F. A new typology of human hair medullas based on lipid composition analysis by synchrotron FTIR microspectroscopy. Analyst 2021; 146:3942-3954. [PMID: 33982696 DOI: 10.1039/d1an00695a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human hair is an organ that connects fundamental and applied research with everyday life through the cosmetic industry. Yet, the accurate compositional description of the human hair medulla is lacking due to their small size and difficulty with microextraction. Medullas are thus generally classified based on morphology. We investigated the chemical composition of the human hair medulla using synchrotron based infrared microspectroscopy. We confirmed that lipid signatures dominate the medulla infrared spectrum having 3-20 times higher lipid concentration compared to their surrounding cortex. Human hair medullas contain a mixture of non-esterified and esterified lipids, and carboxylate soaps in various proportions. We reveal the first direct spectroscopic evidence that medulla carboxylates are coordinated to calcium since they exhibit the specific calcium carboxylate signature. Using a representative sample, we observed a strong compositional variability between medullas that was unreported before. We detected calcium carboxylates in 76% of the medullas with one order of magnitude concentration variability between samples. All medullas contained esters with esterification varying by a factor of 30. Moreover, we detected the presence of crystalline calcium stearate in 9% of the medullas. We described a series of spectral markers to characterize medullas based on their lipid composition and propose to classify medullas in four to five groups. Our analysis provides a more detailed understanding of the chemical composition of human hair medullas that may impact cosmetics and biology. The origin and biological meaning of these variations must still be investigated.
Collapse
Affiliation(s)
- Christophe Sandt
- SMIS beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-sur-Yvette CEDEX, France.
| | - Ferenc Borondics
- SMIS beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
5
|
Li L, Wu J, Yang L, Wang H, Xu Y, Shen K. Fourier Transform Infrared Spectroscopy: An Innovative Method for the Diagnosis of Ovarian Cancer. Cancer Manag Res 2021; 13:2389-2399. [PMID: 33737836 PMCID: PMC7965685 DOI: 10.2147/cmar.s291906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy due to the late diagnoses at advanced stages, drug resistance and the high recurrence rate. Thus, there is an urgent need to develop new techniques to diagnose and monitor ovarian cancer patients. Fourier transform infrared (FTIR) spectroscopy has great potential in the diagnosis of this disease, as well as the real-time monitoring of cancer development and chemoresistance. As a noninvasive, simple and convenient technique, it can not only distinguish the molecular differences between normal and malignant tissues, but also be used to identify the characteristics of different types of ovarian cancer. FTIR spectroscopy is also widely used in monitoring cancer cells in response to antitumor drugs, distinguishing cells in different growth states, and identifying new synthetic drugs. In this paper, the applications of FTIR spectroscopy for ovarian cancer diagnosis and other works carried out so far are described in detail.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
| | - Huizi Wang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
6
|
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal Chim Acta 2020; 1133:150-177. [PMID: 32993867 DOI: 10.1016/j.aca.2020.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Infrared (IR; or mid-infrared, MIR; 4000-400 cm-1; 2500-25,000 nm) spectroscopy has become one of the most powerful and versatile tools at the disposal of modern bioscience. Because of its high molecular specificity, applicability to wide variety of samples, rapid measurement and non-invasivity, IR spectroscopy forms a potent approach to elucidate qualitative and quantitative information from various kinds of biological material. For these reasons, it became an established bioanalytical technique with diverse applications. This work aims to be a comprehensive and critical review of the recent accomplishments in the field of biomolecular and bioanalytical IR spectroscopy. That progress is presented on a wider background, with fundamental characteristics, the basic principles of the technique outlined, and its scientific capability directly compared with other methods being used in similar fields (e.g. near-infrared, Raman, fluorescence). The article aims to present a complete examination of the topic, as it touches the background phenomena, instrumentation, spectra processing and data analytical methods, spectra interpretation and related information. To suit this goal, the article includes a tutorial information essential to obtain a thorough perspective of bio-related applications of the reviewed methodologies. The importance of the fundamental factors to the final performance and applicability of IR spectroscopy in various areas of bioscience is explained. This information is interpreted in critical way, with aim to gain deep understanding why IR spectroscopy finds extraordinarily intensive use in this remarkably diverse and dynamic field of research and utility. The major focus is placed on the diversity of the applications in which IR biospectroscopy has been established so far and those onto which it is expanding nowadays. This includes qualitative and quantitative analytical spectroscopy, spectral imaging, medical diagnosis, monitoring of biophysical processes, and studies of physicochemical properties and dynamics of biomolecules. The application potential of IR spectroscopy in light of the current accomplishments and the future prospects is critically evaluated and its significance in the progress of bioscience is comprehensively presented.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| |
Collapse
|
7
|
Infrared Spectroscopic Imaging Visualizes a Prognostic Extracellular Matrix-Related Signature in Breast Cancer. Sci Rep 2020; 10:5442. [PMID: 32214177 PMCID: PMC7096505 DOI: 10.1038/s41598-020-62403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular analysis techniques such as gene expression analysis and proteomics have contributed greatly to our understanding of cancer heterogeneity. In prior studies, gene expression analysis was shown to stratify patient outcome on the basis of tumor-microenvironment associated genes. A specific gene expression profile, referred to as ECM3 (Extracellular Matrix Cluster 3), indicated poorer survival in patients with grade III tumors. In this work, we aimed to visualize the downstream effects of this gene expression profile onto the tissue, thus providing a spatial context to altered gene expression profiles. Using infrared spectroscopic imaging, we identified spectral patterns specific to the ECM3 gene expression profile, achieving a high spectral classification performance of 0.87 as measured by the area under the curve of the receiver operating characteristic curve. On a patient level, we correctly identified 20 out of 22 ECM3 group patients and 19 out of 20 non-ECM3 group patients by using this spectroscopic imaging-based classifier. By comparing pixels that were identified as ECM3 or non-ECM3 with H&E and IHC images, we were also able to observe an association between tissue morphology and the gene expression clusters, showing the ability of our method to capture broad outcome associated features from infrared images.
Collapse
|
8
|
Effects of Cannabis Use on the Protein and Lipid Profile of Olfactory Neuroepithelium Cells from Schizophrenia Patients Studied by Synchrotron-Based FTIR Spectroscopy. Biomolecules 2020; 10:biom10020329. [PMID: 32092878 PMCID: PMC7072126 DOI: 10.3390/biom10020329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder with a high genetic component, but the presence of environmental stressors can be important for its onset and progression. Cannabis use can be a major risk factor for developing SCZ. However, despite the available data on the neurobiological underpinnings of SCZ, there is an important lack of studies in human neuronal tissue and living cells addressing the effects of cannabis in SCZ patients. In this study, we analysed the most relevant bio-macromolecular constituents in olfactory neuroepithelium (ON) cells of healthy controls non-cannabis users, healthy cannabis users, SCZ patients non-cannabis users, and SCZ patients cannabis users using Synchrotron Radiation-Fourier Transform Infrared (SR-FTIR) spectrometry and microscopy. Our results revealed that SCZ patients non-cannabis users, and healthy cannabis users exhibit similar alterations in the macromolecular profile of ON cells, including disruption in lipid composition, increased lipid membrane renewal rate and lipid peroxidation, altered proteins containing more β-sheet structures, and showed an increase in DNA and histone methylation. Notably, these alterations were not observed in SCZ patients who use cannabis regularly. These data suggest a differential effect of cannabis in healthy controls and in SCZ patients in terms of the macromolecular constituents of ON cells.
Collapse
|
9
|
Clède S, Sandt C, Dumas P, Policar C. Monitoring the Kinetics of the Cellular Uptake of a Metal Carbonyl Conjugated with a Lipidic Moiety in Living Cells Using Synchrotron Infrared Spectromicroscopy. APPLIED SPECTROSCOPY 2020; 74:63-71. [PMID: 31617373 DOI: 10.1177/0003702819877260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Presented here is the exploitation of synchrotron infrared spectromicroscopy to evaluate the feasibility of monitoring the cellular uptake of rhenium-tris-carbonyl-tagged (Re(CO)3) lipophilic chains in living cells. To this aim, an in-house thermostated microfluidic device was used to limit water absorption while keeping cells alive. Indeed, cells showed a high survival rate in the microfluidic device over the course of the experiment, proving the short-term biocompatibility of the device. We recorded spectra of single, living, fully hydrated breast cancer MDA-MB231 cells and could follow the penetration of the rhenium complexes for up to 2 h. Despite the strong variations observed in the uptake kinetics between individual cells, the Re(CO)3 complex was traced inside the cells at low concentration and shown to enter them on the hour time scale by active transport.
Collapse
Affiliation(s)
- Sylvain Clède
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| | - Christophe Sandt
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Paul Dumas
- SMIS beamline, SOLEIL synchrotron, L'orme des Merisiers, Gif sur Yvette, France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne université, Paris, France
| |
Collapse
|
10
|
Kochan K, Perez-Guaita D, Pissang J, Jiang JH, Peleg AY, McNaughton D, Heraud P, Wood BR. In vivo atomic force microscopy-infrared spectroscopy of bacteria. J R Soc Interface 2019; 15:rsif.2018.0115. [PMID: 29593091 DOI: 10.1098/rsif.2018.0115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 01/30/2023] Open
Abstract
A new experimental platform for probing nanoscale molecular changes in living bacteria using atomic force microscopy-infrared (AFM-IR) spectroscopy is demonstrated. This near-field technique is eminently suited to the study of single bacterial cells. Here, we report its application to monitor dynamical changes occurring in the cell wall during cell division in Staphylococcus aureus using AFM to demonstrate the division of the cell and AFM-IR to record spectra showing the thickening of the septum. This work was followed by an investigation into single cells, with particular emphasis on cell-wall signatures, in several bacterial species. Specifically, mainly cell wall components from S. aureus and Escherichia coli containing complex carbohydrate and phosphodiester groups, including peptidoglycans and teichoic acid, could be identified and mapped at nanometre spatial resolution. Principal component analysis of AFM-IR spectra of six living bacterial species enabled the discrimination of Gram-positive from Gram-negative bacteria based on spectral bands originating mainly from the cell wall components. The ability to monitor in vivo molecular changes during cellular processes in bacteria at the nanoscale opens a new platform to study environmental influences and other factors that affect bacterial chemistry.
Collapse
Affiliation(s)
- Kamila Kochan
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia
| | - David Perez-Guaita
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia
| | - Julia Pissang
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Don McNaughton
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia .,Monash Biomedicine Discovery Institute and the Department of Microbiology, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Melbourne, 3800 Victoria, Australia
| |
Collapse
|
11
|
Dučić T, Stamenković S, Lai B, Andjus P, Lučić V. Multimodal Synchrotron Radiation Microscopy of Intact Astrocytes from the hSOD1 G93A Rat Model of Amyotrophic Lateral Sclerosis. Anal Chem 2018; 91:1460-1471. [DOI: 10.1021/acs.analchem.8b04273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tanja Dučić
- CELLS − ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Stefan Stamenković
- Faculty of Biology, University of Belgrade, Center for Laser Microscopy−CLM, Studentski Trg 3, 11000 Belgrade, Serbia
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Pavle Andjus
- Faculty of Biology, University of Belgrade, Center for Laser Microscopy−CLM, Studentski Trg 3, 11000 Belgrade, Serbia
| | - Vladan Lučić
- Max Planck Institute of Biochemistry, Am Klopferspitz 1, 82152, Martinsried, Germany
| |
Collapse
|
12
|
Henry L, Delsuc N, Laugel C, Lambert F, Sandt C, Hostachy S, Bernard AS, Bertrand HC, Grimaud L, Baillet-Guffroy A, Policar C. Labeling of Hyaluronic Acids with a Rhenium-tricarbonyl Tag and Percutaneous Penetration Studied by Multimodal Imaging. Bioconjug Chem 2018; 29:987-991. [PMID: 29360339 DOI: 10.1021/acs.bioconjchem.7b00825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyaluronic acids were labeled with a rhenium-tricarbonyl used as single core multimodal probe for imaging and their penetration into human skin biopsies was studied using IR microscopy and fluorescence imaging (labeled SCoMPI). The penetration was shown to be dependent on the molecular weight of the molecule and limited to the upper layer of the skin.
Collapse
Affiliation(s)
- Lucas Henry
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Cécile Laugel
- Laboratory of Analytical Chemistry, Lip(Sys)2, (EA 7357), Faculty of Pharmacy, Paris-Sud , University of Paris-Saclay , 5 Rue Jean-Baptiste Clément , 92296 Chatenay-Malabry , France
| | - François Lambert
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Christophe Sandt
- SMIS beamline , Synchrotron SOLEIL Saint-Aubin , 91192 Gif-sur-Yvette Cedex , France
| | - Sarah Hostachy
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Anne-Sophie Bernard
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Hélène C Bertrand
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Laurence Grimaud
- PASTEUR, Département de chimie, École normale supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS , 75005 Paris , France
| | - Arlette Baillet-Guffroy
- Laboratory of Analytical Chemistry, Lip(Sys)2, (EA 7357), Faculty of Pharmacy, Paris-Sud , University of Paris-Saclay , 5 Rue Jean-Baptiste Clément , 92296 Chatenay-Malabry , France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
13
|
|
14
|
Andrew Chan KL, Kazarian SG. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev 2016; 45:1850-64. [PMID: 26488803 DOI: 10.1039/c5cs00515a] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
FTIR spectroscopic imaging is a label-free, non-destructive and chemically specific technique that can be utilised to study a wide range of biomedical applications such as imaging of biopsy tissues, fixed cells and live cells, including cancer cells. In particular, the use of FTIR imaging in attenuated total reflection (ATR) mode has attracted much attention because of the small, but well controlled, depth of penetration and corresponding path length of infrared light into the sample. This has enabled the study of samples containing large amounts of water, as well as achieving an increased spatial resolution provided by the high refractive index of the micro-ATR element. This review is focused on discussing the recent developments in FTIR spectroscopic imaging, particularly in ATR sampling mode, and its applications in the biomedical science field as well as discussing the future opportunities possible as the imaging technology continues to advance.
Collapse
Affiliation(s)
- K L Andrew Chan
- Institute of Pharmaceutical Science, King's College London, SE1 9NH, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
15
|
Dazzi A, Prater CB. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem Rev 2016; 117:5146-5173. [DOI: 10.1021/acs.chemrev.6b00448] [Citation(s) in RCA: 532] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexandre Dazzi
- Laboratoire
de Chimie Physique, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Craig B. Prater
- Anasys Instruments, 325 Chapala
St., Santa Barbara, California 93101, United States
| |
Collapse
|
16
|
Vibrational spectroscopies to investigate concretions and ectopic calcifications for medical diagnosis. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Sandt C, Nadaradjane C, Richards R, Dumas P, Sée V. Use of infrared microspectroscopy to elucidate a specific chemical signature associated with hypoxia levels found in glioblastoma. Analyst 2016; 141:870-83. [DOI: 10.1039/c5an02112j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Detection of the chemical signature associated with hypoxia in single glioblastoma cells by synchrotron infrared microspectroscopy.
Collapse
Affiliation(s)
- Christophe Sandt
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - Céline Nadaradjane
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
- Department of Biochemistry
| | - Rosalie Richards
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool
- UK
| | - Paul Dumas
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - Violaine Sée
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
18
|
Fernández E, Rodríguez G, Hostachy S, Clède S, Cócera M, Sandt C, Lambert F, de la Maza A, Policar C, López O. A rhenium tris-carbonyl derivative as a model molecule for incorporation into phospholipid assemblies for skin applications. Colloids Surf B Biointerfaces 2015; 131:102-7. [PMID: 25969419 DOI: 10.1016/j.colsurfb.2015.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 11/25/2022]
Abstract
A rhenium tris-carbonyl derivative (fac-[Re(CO)3Cl(2-(1-dodecyl-1H-1,2,3,triazol-4-yl)-pyridine)]) was incorporated into phospholipid assemblies, called bicosomes, and the penetration of this molecule into skin was monitored using Fourier-transform infrared microspectroscopy (FTIR). To evaluate the capacity of bicosomes to promote the penetration of this derivative, the skin penetration of the Re(CO)3 derivative dissolved in dimethyl sulfoxide (DMSO), a typical enhancer, was also studied. Dynamic light scattering results (DLS) showed an increase in the size of the bicosomes with the incorporation of the Re(CO)3 derivative, and the FTIR microspectroscopy showed that the Re(CO)3 derivative incorporated in bicosomes penetrated deeper into the skin than when dissolved in DMSO. When this molecule was applied on the skin using the bicosomes, 60% of the Re(CO)3 derivative was retained in the stratum corneum (SC) and 40% reached the epidermis (Epi). Otherwise, the application of this molecule via DMSO resulted in 95% of the Re(CO)3 derivative being in the SC and only 5% reaching the Epi. Using a Re(CO)3 derivative with a dodecyl-chain as a model molecule, it was possible to determine the distribution of molecules with similar physicochemical characteristics in the skin using bicosomes. This fact makes these nanostructures promising vehicles for the application of lipophilic molecules inside the skin.
Collapse
Affiliation(s)
- Estibalitz Fernández
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | - Sarah Hostachy
- Ecole Normale Supérieure, Rue Lhomond, 75005 Paris, France
| | - Sylvain Clède
- Ecole Normale Supérieure, Rue Lhomond, 75005 Paris, France
| | | | - Christophe Sandt
- Synchrotron SOLEIL, SMIS Beamline, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | | | - Alfonso de la Maza
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Olga López
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
19
|
Zhang F, Huang Q, Yan J, Zhang X, Li J. Assessment of the effect of trichostatin A on HeLa cells through FT-IR spectroscopy. Anal Chem 2015; 87:2511-7. [PMID: 25602746 DOI: 10.1021/ac504691q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trichostatin A (TSA) is one of histone deacetylase (HDAC) inhibitor drugs which can suppress the enzymatic activity of deacytylases and promote the acetylation of both histone and nonhistone proteins in cells. Investigation of the effect of TSA on cellular acetylation is critical for better understanding of the antitumor drug's mechanism interacting with cancer cells. As Fourier transform infrared spectroscopy (FT-IR) is a powerful analytical tool which can detect nondestructively and quantitatively biological samples without biotagging and biolabeling, here we employed FT-IR spectroscopy to probe the chemical and structural changes of proteins in the TSA treated cells, and with the aid of fluorescent microscopy, we could scrutinize the time-dependent and dose effects on the acetylation level promoted by TSA. Our results showed that TSA caused an elevated level of cellular acetylation and conformational/structural changes of proteins in the cells, and a higher dosage of TSA caused a higher percent of α-helix structure accompanied by an increment of acetylation level in both histones and cytoskeleton proteins. This work therefore not only validates the usefulness of FT-IR spectroscopy in the quantitative assessment of cellular acetylation but also may open an avenue to the in-depth investigation of the effect of HDAC inhibitor drugs such as TSA on cancer cells.
Collapse
Affiliation(s)
- Fengqiu Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China , Hefei, Anhui 230026, China
| | | | | | | | | |
Collapse
|
20
|
Santoro G, Zlateva T, Ruggi A, Quaroni L, Zobi F. Synthesis, characterization and cellular location of cytotoxic constitutional organometallic isomers of rhenium delivered on a cyanocobalmin scaffold. Dalton Trans 2015; 44:6999-7008. [DOI: 10.1039/c4dt03598d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Constitutional isomers based on vitamin B12 and a fluorescent rhenium diimine complex were prepared, characterized, tested against PC-3 prostate cancer cells and investigated via IR spectromicroscopy for cellular uptake by live 3T3 fibroblasts.
Collapse
Affiliation(s)
- Giuseppe Santoro
- Department of Chemistry
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | | | - Albert Ruggi
- Department of Chemistry
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | | | - Fabio Zobi
- Department of Chemistry
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
21
|
Clède S, Policar C. Metal-carbonyl units for vibrational and luminescence imaging: towards multimodality. Chemistry 2014; 21:942-58. [PMID: 25376740 DOI: 10.1002/chem.201404600] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-carbonyl complexes are attractive structures for bio-imaging. In addition to unique vibrational properties due to the CO moieties enabling IR and Raman cell imaging, the appropriate choice of ancillary ligands opens up the opportunity for luminescence detection. Through a classification by techniques, past and recent developments in the application of metal-carbonyl complexes for vibrational and luminescence bio-imaging are reviewed. Finally, their potential as bimodal IR and luminescent probes is addressed.
Collapse
Affiliation(s)
- Sylvain Clède
- Ecole Normale Supérieure, PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS-ENS-UPMC, Laboratoire des Biomolécules, UMR7203, 24, rue Lhomond, 75005 Paris (France), Fax: (+33) 1-4432-3389
| | | |
Collapse
|