1
|
Carvalho MFL, Calicchio CS, de Almeida BO, de Miranda LBL, Lipreri da Silva JC, Lima K, Machado-Neto JA. Transcriptomics analysis identified ezrin as a potential druggable target in cervical and gastric cancer cells. Clinics (Sao Paulo) 2024; 79:100422. [PMID: 38972247 PMCID: PMC11276928 DOI: 10.1016/j.clinsp.2024.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
OBJECTIVE Cancer genomics and transcriptomics studies have provided a large volume of data that enables to test of hypotheses based on real data from cancer patients. Ezrin (encoded by the EZR gene) is a highly expressed protein in cancer that contributes to linking the actin cytoskeleton to the cell membrane and signal transduction pathways involved in oncogenesis and disease progression. NSC305787 is a pharmacological ezrin inhibitor with potential antineoplastic effects. In the present study, the authors prospected EZR mRNA levels in a pan-cancer analysis and identified potential cancers that could benefit from anti-EZR therapies. METHODS This study analyzed TCGA data for 32 cancer types, emphasizing cervical squamous cell carcinoma and stomach adenocarcinoma. It investigated the impact of EZR transcript levels on clinical outcomes and identified differentially expressed genes. Cell lines were treated with NSC305787, and its effects were assessed through various cellular and molecular assays. RESULTS EZR mRNA levels are highly expressed, and their expression is associated with biologically relevant molecular processes in cervical squamous carcinoma and stomach adenocarcinoma. In cellular models of cervical and gastric cancer, NSC305787 reduces cell viability and clonal growth (p < 0.05). Molecular analyses indicate that the pharmacological inhibition of EZR induces molecular markers of cell death and DNA damage, in addition, to promoting the expression of genes associated with apoptosis and inhibiting the expression of genes related to survival and proliferation. CONCLUSION The present findings provide promising evidence that ezrin may be a molecular target in the treatment of cervical and gastric carcinoma.
Collapse
Affiliation(s)
| | - Carolina Santana Calicchio
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruna Oliveira de Almeida
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Keli Lima
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Rivolta AA, Bujold AR, Wilmarth PA, Phinney BS, Navelski JP, Horohov DW, Sanz MG. Comparison of the broncoalveolar lavage fluid proteomics between foals and adult horses. PLoS One 2023; 18:e0290778. [PMID: 37669266 PMCID: PMC10479908 DOI: 10.1371/journal.pone.0290778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Neonates have different cellular composition in their bronchoalveolar lavage fluid (BALF) when compared to foals and adult horses; however, little is known about the non-cellular components of BALF. The objective of this study was to determine the proteomic composition of BALF in neonatal horses and to compare it to that of foals and adult horses. Bronchoalveolar lavage fluid samples of seven neonates (< 1 week age), four 5 to 7-week-old foals, and six adult horses were collected. Quantitative proteomics of the fluid was performed using tandem mass tag labeling followed by high resolution liquid chromatography tandem mass spectrometry and protein relative abundances were compared between groups using exact text. A total of 704 proteins were identified with gene ontology terms and were classified. Of these, 332 proteins were related to the immune system in neonates, foals, and adult horses. The most frequent molecular functions identified were binding and catalytic activity and the most common biological processes were cellular process, metabolic process, and biological regulation. There was a significant difference in the proteome of neonates when compared to foals and to adult horses. Neonates had less relative expression (FDR < 0.01) of many immune-related proteins, including immunoglobulins, proteins involved in the complement cascade, ferritin, BPI fold-containing family B member 1, and macrophage receptor MARCO. This is the first report of equine neonate BALF proteomics and reveals differential abundance of proteins when compared to BALF from adult horses. The lower relative abundance of immune-related proteins in neonates could contribute to their susceptibility to pulmonary infections.
Collapse
Affiliation(s)
- Alejandra A. Rivolta
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Adina R. Bujold
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Phillip A. Wilmarth
- Proteomic Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Brett S. Phinney
- Genome Center Proteomics Core Facility, UC Davis, Davis, California, United States of America
| | - Joseph P. Navelski
- School of Economic Sciences, Washington State University, Pullman, Washington, United States of America
| | - David W. Horohov
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Macarena G. Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
4
|
Kumar B, Dey AK, Saha S, Singh AK, Kshetrapal P, Wadhwa N, Thiruvengadam R, Desiraju BK, Bhatnagar S, Salunke DM, Rashid F, Malakar D, Maiti TK. Dynamic Alteration in the Vaginal Secretory Proteome across the Early and Mid-Trimesters of Pregnancy. J Proteome Res 2021; 20:1190-1205. [PMID: 33497241 DOI: 10.1021/acs.jproteome.0c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pregnancy is characterized by intense physiological and structural alterations in the vagina, cervix, and overlying fetal membranes. High vaginal fluid (HVF) is a proximal fluid that covers the lower part of the female reproductive system and the severity of vaginal pathology often adversely affects pregnancy outcomes. To identify the correlation of vaginal fluid proteome dynamics and physiological changes during the progression of pregnancy, a longitudinal study was performed on 20 pregnant women who delivered a baby in >37 weeks without any complications. SWATH-MS-based label-free quantitative proteomics was performed to profile the HVF proteome at three time points defined as V1 (7-12 weeks), V2 (18-20 weeks), and V3 (26-28 weeks). Linear mixed-effect models were used to estimate protein abundance as a function of the period of gestational age. In this study, we identified 1015 HVF proteins and 61 of them were significantly altered until late second trimester. Our result demonstrates that the HVF proteins reveal gestational age-specific expression patterns and the function of these proteins is associated with tissue remodeling, organ development, and microbial defense. Our study provides an opportunity to monitor the underlying physiology of pregnancy that may be further probed for the biomarker identification in pregnancy-related adverse outcomes. Data are available via ProteomeXchange with identifiers PXD014846 and PXD021811.
Collapse
Affiliation(s)
- Bhoj Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Amit Kumar Dey
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Sandhini Saha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Abhishek Kumar Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Pallavi Kshetrapal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Nitya Wadhwa
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Ramachandran Thiruvengadam
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Bapu Koundinya Desiraju
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Dinakar M Salunke
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India.,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Faraz Rashid
- Sciex, 121 UdyogVihar Phase IV, Gurgaon 122015, India
| | | | - Tushar Kanti Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | | |
Collapse
|
5
|
Qian G, Xu J, Shen X, Wang Y, Zhao D, Qin X, You H, Liu Q. BP-1-102 and silencing of Fascin-1 by RNA interference inhibits the proliferation of mouse pituitary adenoma AtT20 cells via the signal transducer and activator of transcription 3/fascin-1 pathway. Int J Neurosci 2020; 131:810-827. [PMID: 32326790 DOI: 10.1080/00207454.2020.1758088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The expression levels of signal transducer and activator of transcription 3 (STAT3) protein and Fascin-1 were inhibited using the STAT3 inhibitor BP-1-102 and RNA interference, respectively, to investigate the expression of AtT20 in mouse pituitary cells. The proliferative capacity and related molecular mechanisms of pituitary tumor cells were then analyzed. METHODS Mouse AtT20 pituitary adenoma cells were divided into a control group (Pa group), a STAT3 inhibitor vehicle group (PA + DMSO group), a STAT3 inhibitor group (PA + BP-1-102 group), a Fascin-1 negative control group (PA + neg-siRNA group) and a Fascin-1 silenced group (PA + Fascin-siRNA group). The related protein expression and cell proliferation of the five groups were measured using immunofluorescence, Western blot and real-time RT-PCR, whereas their apoptosis and cell cycle were evaluated using CCK-8 and flow cytometry. RESULTS Proliferation of AtT20 cells is inhibited with BP-1-102 enhanced apoptosis, at the same time reduced the expression of Fascin-1 and N-cadherin, and increased the expression of E-cadherin. After inhibiting Fascin-1, the expression of STAT3 decreased, the expression of N-cadherin decreased and the expression of E-cadherin increased. CONCLUSIONS BP-1-102 is a novel drug with a great potential in pituitary tumors. Given their important roles in the growth of pituitary adenomas, STAT3 and Fascin-1 can be used as new treatment targets.
Collapse
Affiliation(s)
- GuoDong Qian
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Jian Xu
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - XiaoXu Shen
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Yang Wang
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Dong Zhao
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - XiaoChun Qin
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Hong You
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Qi Liu
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
Su RL, Qiao Y, Guo RF, Lv YY. Cyr61 overexpression induced by interleukin 8 via NF-kB signaling pathway and its role in tumorigenesis of gastric carcinoma in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3197-3207. [PMID: 31934164 PMCID: PMC6949833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Cyr61 (CCN1) is a multifunctional matricellular protein in bridging inflammation and cancer, involved in many biological functions such as tumorigenesis and carcinogenesis. The role of Cyr61 in gastric cancer (GC) has not been fully understood and needs to be investigated and clarified. We examined Cyr61 expression in 6 GC cell lines and stable transfection of recombinants in to BGC823 specifically down regulated the Cyr61 mRNA and protein expression shown by the analysis with western blot, RT-PCR, western blot and immunofluorescence assay. The cells treated with siRNA shown markedly reduced activity in growth, migration and invasion compared with parental BGC823 cells as well as mock transfectants. The Cyr61 deficient cells demonstrated significantly inhibited colony formation in soft agar and reduced tumorigenicity was showed in nude mice, NF-kB pathway evidently inactivated respectively. However, under the stimulation of IL-8, the siRNA-treated cells can restore the capacity of proliferation and invasion. IL-8 can induce the high expression of Cyr61 and MMP11 through NF-kB signal pathway. Silencing of Cyr61 can inhibit or minimize the proliferation and invasiveness of gastric cancer cell. The results imply that Cyr61 enhance the proliferation and invasion of gastric cancer cells and this process is partially modulated by the IL-8 up-regulation. Cyr61 may mediate the proliferation and development of gastric carcinoma.
Collapse
Affiliation(s)
- Ri-La Su
- Department of Oncology, Inner Mongolia People’s HospitalHohhot, China
| | - Ying Qiao
- Department of HIV Diseases, The Second Hospital of HohhotChina
| | - Rui-Fang Guo
- Department of Nutrition, Inner Mongolia People’s HospitalHohhot, China
| | - You-Yong Lv
- Beijing Institute for Cancer Research, Peking University School of OncologyBeijing, China
| |
Collapse
|
7
|
Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int J Mol Sci 2019; 20:ijms20081996. [PMID: 31018575 PMCID: PMC6515277 DOI: 10.3390/ijms20081996] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell–cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.
Collapse
Affiliation(s)
- Katharine A Michie
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Adam Bermeister
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Neil O Robertson
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| | - Sophia C Goodchild
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
8
|
Mohanraj R, Ramani P, Premkumar P, Natesan A, Sherlin HJ, Sukumaran G. Immunohistochemical Expression Of Ezrin In Oral Potentially Malignant Disorders-A Descriptive Study. J Pharm Bioallied Sci 2017; 9:S205-S210. [PMID: 29284965 PMCID: PMC5731014 DOI: 10.4103/jpbs.jpbs_139_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction: Ezrin, also known as cytovillin, is a member of the ERM family of protein. Ezrin cross-links actin filament with the plasma membrane. They are involved in the formation of microvilli, cell–cell adhesion, maintenance of cell shape, cell motility, and membrane trafficking. Recent analysis reveals their involvement in signaling pathways. Ezrin is highly expressed in several types of human cancers, and correlation between its immunoreactivity and histopathological data as well as the patient outcome has previously been studied. Objective: The objective of the study was to analyze the immunohistochemical expression pattern of ezrin in oral potentially malignant disorders (OPMDs), namely, oral submucous fibrosis (OSMF) with different grades and clinically leucoplakia (hyperkeratosis with various degree of dysplasia) and its use as a predictive marker for malignant transformation. Subjects and Methods: Sample size n = 43, histopathologically confirmed cases of OPMDs (13 cases of OSMF with different grades and 30 cases of clinically leukoplakia) were retrieved from the Department of Oral and Maxillofacial Pathology. Immunohistochemistry was done using anti-ezrin antibody, and the expression was graded in terms of proportion and intensity. Results: There was a significant expression of ezrin in OPMDs, and its cytoplasmic shift can be used as a predictive marker for malignant transformation. Conclusion: The findings of the current study revealed that the expression of ezrin in OPMDs may be related to the progression of the disease.
Collapse
Affiliation(s)
- Raghini Mohanraj
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - Priya Premkumar
- Department of Oral Pathology and Microbiology, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - Anuja Natesan
- Department of Oral Pathology and Microbiology, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - Herald J Sherlin
- Department of Oral Pathology and Microbiology, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - Gheena Sukumaran
- Department of Oral Pathology and Microbiology, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Bartova M, Hlavaty J, Tan Y, Singer C, Pohlodek K, Luha J, Walter I. Expression of ezrin and moesin in primary breast carcinoma and matched lymph node metastases. Clin Exp Metastasis 2017. [PMID: 28624994 DOI: 10.1007/s10585-017-9853-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ezrin, radixin, moesin (ERM) are important membrane-cytoskeletal crosslinkers and are suggested to play important role in cancer progression and metastasis. Even though ERM proteins were generally considered to be functionally redundant and the most studied was ezrin, recent studies highlight their distinct roles in metastatic process. Little information is available regarding the role of individual ERM proteins and their phosphorylated forms in human breast cancer. Our study is the first to examine expression of ezrin, moesin and their phosphorylated forms in primary breast tumors and matched lymph node metastases (LNMs) and their correlation with clinicopathological variables. A total of 88 primary breast cancer, 91 LNMs, 54 intraductal carcinoma and 26 normal adjacent breast tissue samples from tissue microarrays were studied. Expression was determined by immunohistochemistry, the intensity and number of positive cells was scored. Statistical analysis of protein expression and patients' age, tumor grade and hormonal status was performed. No statistical significant difference was found in ezrin, moesin, p-ezrinTyr353 and pan-p-ezrinThr567/radixinThr564/moesinThr558 expression between primary tumors and LNMs. Even though it was not significant, moesin expression varied between primary tumors, intraductal carcinoma, normal breast adjacent tissue and LNMs. A significant positive correlation between moesin and tumor grade has been proven. Even though primary tumors and matched LNMs did not show different expression patterns, moesin correlated significantly with higher tumor grade. Its positivity in intraductal carcinoma and normal breast tissue adjacent to cancer might indicate its role in tumor intiation/progression.
Collapse
Affiliation(s)
- M Bartova
- 2nd Department of Obstetrics and Gynecology, University Hospital Bratislava, Ružinovská 6, Bratislava, 826 06, Slovakia.
| | - J Hlavaty
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Y Tan
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
| | - C Singer
- Division of General Gynecology and Gynecological Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - K Pohlodek
- 2nd Department of Obstetrics and Gynecology, University Hospital Bratislava, Ružinovská 6, Bratislava, 826 06, Slovakia
| | - J Luha
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovakia
| | - I Walter
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
10
|
Xie JJ, Guo JC, Wu ZY, Xu XE, Wu JY, Chen B, Ran LQ, Liao LD, Li EM, Xu LY. Integrin α5 promotes tumor progression and is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Hum Pathol 2015; 48:69-75. [PMID: 26772401 DOI: 10.1016/j.humpath.2015.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
The integrin family plays a major role in complex biological events such as differentiation, development, wound healing, and the altered adhesive and invasive properties of tumor cells. The expression and function of integrin α5 in esophageal squamous cell carcinoma (ESCC) are not clear. Here, by using tissue microarrays and immunohistochemical method, integrin α5 expression was retrospectively evaluated in 147 samples of human ESCC. Results showed that expression of integrin α5 was heterogeneous and varied from negative to intense expression in a membrane and cytoplasmic distribution manner. High expression of integrin α5 was significantly correlated with lymph node metastasis (P = .042) and tumor size (P = .042). Kaplan-Meier analysis revealed that high expression of integrin α5 was related to poor overall survival of ESCC patients (P = .018). Multivariate analysis suggested that integrin α5 expression status was an independent prognostic factor for ESCC (P = .003). Moreover, integrin α5 expression was associated with the survival of patients with lymph node metastasis (P = .020), but did not influence the survival of patients without lymph node metastasis. Finally, we found that RNAi-mediated knockdown of integrin α5 led to decreased growth, migration, and invasion of ESCC cells. Combined, integrin α5 might play important roles in the progression of ESCC. Integrin α5 is a novel biomarker to predict the prognosis of ESCC patients.
Collapse
Affiliation(s)
- Jian-Jun Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China.
| | - Jin-Cheng Guo
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Zhi-Yong Wu
- Department of Oncologic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, PR China
| | - Xiu-E Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China
| | - Jian-Yi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Bo Chen
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China
| | - Li-Qiang Ran
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China
| | - En-Min Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China.
| |
Collapse
|
11
|
Xie JJ, Xie YM, Chen B, Pan F, Guo JC, Zhao Q, Shen JH, Wu ZY, Wu JY, Xu LY, Li EM. ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. Oncotarget 2015; 5:8569-82. [PMID: 25149542 PMCID: PMC4226705 DOI: 10.18632/oncotarget.2322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ATF3 was a transcription factor involved in the progression of certain cancers. Here, we sought to explore the expression and biological function of ATF3 in esophageal squamous cell carcinomas (ESCC). The prognostic significance of ATF3 expression was evaluated in 150 ESCC samples and 21 normal squamous cell epithelium tissues. Results showed that ATF3 was down-regulated in ESCC lesions compared with paired non-cancerous tissues and low tumorous ATF3 expression significantly correlated with shorter overall survival (OS) and disease-free survival (DFS). Cox regression analysis confirmed that ATF3 expression was an independent prognostic factor. Experimentally, forced expression of ATF3 led to decreased growth and invasion properties of ESCC cells in vitro and in vivo, whereas knockdown of ATF3 did the opposite. Furthermore, ATF3 upregulated the expression of MDM2 by increasing the nuclear translocation of P53 and formed an ATF3/MDM2/MMP-2 complex that facilitated MMP-2 degradation, which subsequently led to inhibition of cell invasion. Finally, we showed that Cisplatin could restrain the invasion of ESCC cells by inducing the expression of ATF3 via P53 signaling. Combined, our findings highlight a suppressed role for ATF3 in ESCC and targeting ATF3 might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jian-Jun Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Yang-Min Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Bo Chen
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Feng Pan
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Jin-Cheng Guo
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Qing Zhao
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Jin-Hui Shen
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, P. R. China
| | - Zhi-Yong Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Oncologic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, P. R. China
| | - Jian-Yi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - En-Min Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| |
Collapse
|
12
|
Clapéron A, Debray D, Redon MJ, Mergey M, Ho-Bouldoires THN, Housset C, Fabre M, Fouassier L. Immunohistochemical profile of ezrin and radixin in human liver epithelia during fetal development and pediatric cholestatic diseases. Clin Res Hepatol Gastroenterol 2013; 37:142-51. [PMID: 23507543 DOI: 10.1016/j.clinre.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 02/04/2023]
Abstract
AIM Ezrin and radixin are actin-binding proteins that contribute to the integrity of epithelia. Abnormalities of bile secretion occur primarily in cholestatic liver diseases and are associated with changes in cell cytoskeleton. Expression of these proteins during liver development and in cholestatic liver diseases remains poorly investigated. METHODS Ezrin and radixin expression was analyzed in fetal, adult and pediatric cholestatic human liver (i.e. biliary atresia, sclerosing cholangitis) by immunohistochemistry. RESULTS In adult and fetal livers, ezrin was expressed exclusively in the cells of the biliary lineage (i.e. biliary epithelial cells and ductal cells) whereas radixin was located not only in hepatocytes but also in cells of the biliary lineage. In the lobule of mature livers, radixin displayed a zonal distribution with predominant expression in the periportal region. In cholestatic diseases, both proteins were expressed in cells of the ductular reaction. An aberrant expression of ezrin was detected in hepatocytes of cirrhotic nodules with a CK7-positive pattern and in malignant hepatocytes in a course of cholestatic disease toward cancer. CONCLUSIONS Among the components of the liver epithelial cells, ezrin was exclusively expressed in biliary phenotype cells, while radixin was found in biliary and hepatocytic lineages, with a periportal zonal expression. In cholestatic diseases, ezrin was expressed in hepatocytes supporting the appearance of a biliary phenotype.
Collapse
Affiliation(s)
- Audrey Clapéron
- INSERM, UMR_S 938, CdR Saint-Antoine, faculté de médecine Pierre-et-Marie-Curie, site Saint-Antoine, 75012 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
ZHANG PIXIAN, ZHANG FAREN, XIE JIANJUN, TAO LIHUA, LÜ ZHUO, XU XIUE, SHEN JIAN, XU LIYAN, LI ENMIN. Expression of NGAL and NGALR in human embryonic, fetal and normal adult tissues. Mol Med Rep 2012; 6:716-22. [DOI: 10.3892/mmr.2012.980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/12/2012] [Indexed: 11/05/2022] Open
|