1
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
2
|
De Leo TC, Nascimento Dos Santos S, Del Cistia Andrade C, Ricci E, Turato WM, Lopes NP, Oliveira RS, Bernardes ES, Dias-Baruffi M. Engineering of galectin-3 for glycan-binding optical imaging. Biochem Biophys Res Commun 2019; 521:674-680. [PMID: 31685208 DOI: 10.1016/j.bbrc.2019.10.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
Galectin-3 (Gal-3) is a multifunctional glycan-binding protein that participates in many pathophysiological events and has been described as a biomarker and potential therapeutic target for severe disorders, such as cancer. Several probes for Gal-3 or its ligands have been developed, however both the pathophysiological mechanisms and potential biomedical applications of Gal-3 remain not fully assessed. Molecular imaging using bioluminescent probes provides great sensitivity for in vivo and in vitro analysis for both cellular and whole multicellular organism tracking and target detection. Here, we engineered a chimeric molecule consisting of Renilla luciferase fused with mouse Gal-3 (RLuc-mGal-3). RLuc-mGal-3 preparation was highly homogenous, soluble, active, and has molecular mass of 65,870.95 Da. This molecule was able to bind to MKN45 cell surface, property which was inhibited by the reduction of Gal-3 ligands on the cell surface by the overexpression of ST6GalNAc-I. In order to obtain an efficient and stable delivery system, RLuc-mGal-3 was adsorbed to poly-lactic acid nanoparticles, which increased binding to MKN45 cells in vitro. Furthermore, bioluminescence imaging showed that RLuc-mGal-3 was able to indicate the presence of implanted tumor in mice, event drastically inhibited by the presence of lactose. This novel bioluminescent chimeric molecule offers a safe and highly sensitive alternative to fluorescent and radiolabeled probes with potential application in biomedical research for a better understanding of the distribution and fate of Gal-3 and its ligands in vitro and in vivo.
Collapse
Affiliation(s)
- Thais Canassa De Leo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe S/N, CEP 14040-903, Ribeirao Preto, SP, Brazil
| | | | - Camillo Del Cistia Andrade
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe S/N, CEP 14040-903, Ribeirao Preto, SP, Brazil
| | - Eduardo Ricci
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Walter Miguel Turato
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Norberto Peporine Lopes
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe S/N, CEP 14040-903, Ribeirao Preto, SP, Brazil
| | | | | | - Marcelo Dias-Baruffi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe S/N, CEP 14040-903, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
3
|
Locally anchoring enzymes to tissues via extracellular glycan recognition. Nat Commun 2018; 9:4943. [PMID: 30467349 PMCID: PMC6250738 DOI: 10.1038/s41467-018-07129-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/12/2018] [Indexed: 01/06/2023] Open
Abstract
Success of enzymes as drugs requires that they persist within target tissues over therapeutically effective time frames. Here we report a general strategy to anchor enzymes at injection sites via fusion to galectin-3 (G3), a carbohydrate-binding protein. Fusing G3 to luciferase extended bioluminescence in subcutaneous tissue to ~7 days, whereas unmodified luciferase was undetectable within hours. Engineering G3-luciferase fusions to self-assemble into a trimeric architecture extended bioluminescence in subcutaneous tissue to 14 days, and intramuscularly to 3 days. The longer local half-life of the trimeric assembly was likely due to its higher carbohydrate-binding affinity compared to the monomeric fusion. G3 fusions and trimeric assemblies lacked extracellular signaling activity of wild-type G3 and did not accumulate in blood after subcutaneous injection, suggesting low potential for deleterious off-site effects. G3-mediated anchoring to common tissue glycans is expected to be broadly applicable for improving local pharmacokinetics of various existing and emerging enzyme drugs. The use of enzymes as drugs requires that they persist within target tissues over therapeutically relevant time frames. Here the authors use a galectin-3 fusion to anchor enzymes at injection sites for up to 14 days.
Collapse
|
4
|
Santos SN, Junqueira MS, Francisco G, Vilanova M, Magalhães A, Baruffi MD, Chammas R, Harris AL, Reis CA, Bernardes ES. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. Oncotarget 2016; 7:83570-83587. [PMID: 27835877 PMCID: PMC5347789 DOI: 10.18632/oncotarget.13192] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
ST6GalNAc-I, the sialyltransferase responsible for sialyl-Tn (sTn) synthesis, has been previously reported to be positively associated with cancer aggressiveness. Here we describe a novel sTn-dependent mechanism for chemotherapeutic resistance. We show that sTn protects cancer cells against chemotherapeutic-induced cell death by decreasing the interaction of cell surface glycan receptors with galectin-3 and increasing its intracellular accumulation. Moreover, exogenously added galectin-3 potentiated the chemotherapeutics-induced cytotoxicity in sTn non-expressing cells, while sTn overexpressing cells were protected. We also found that the expression of sTn was associated with a reduction in galectin-3-binding sites in human gastric samples tumors. ST6GalNAc-I knockdown restored galectin-3-binding sites on the cell surface and chemotherapeutics sensibility. Our results clearly demonstrate that an interruption of O-glycans extension caused by ST6GalNAc-I enzymatic activity leads to tumor cells resistance to chemotherapeutic drugs, highlighting the need for the development of novel strategies to target galectin-3 and/or ST6GalNAc-I.
Collapse
MESH Headings
- Animals
- Antigens, Tumor-Associated, Carbohydrate/genetics
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antineoplastic Agents/pharmacology
- Blood Proteins
- Cell Line, Tumor
- Cell Proliferation
- Cisplatin/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Galectin 3/metabolism
- Galectins
- Glycosylation
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Protein Processing, Post-Translational
- Protein Transport
- RNA Interference
- Sialyltransferases/genetics
- Sialyltransferases/metabolism
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Time Factors
- Transfection
- Tumor Burden
Collapse
Affiliation(s)
- Sofia N. Santos
- Department of Radiopharmacy, Nuclear Energy Research Institute, Radiopharmacy Center, São Paulo, Brazil
| | - Mara S. Junqueira
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of Sao Paulo-ICESP, Brazil
| | - Guilherme Francisco
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of Sao Paulo-ICESP, Brazil
| | - Manuel Vilanova
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS-UP – Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Magalhães
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Department of Glycobiology in Cancer, IPATIMUP - Institute of Molecular Pathology and Immunology from the University of Porto, Porto, Portugal
| | - Marcelo Dias Baruffi
- Department of Clinical, Toxicological and Bromatological Analysis, Faculdade de Ciências Farmaceuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Roger Chammas
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of Sao Paulo-ICESP, Brazil
| | - Adrian L. Harris
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Celso A. Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS-UP – Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Department of Glycobiology in Cancer, IPATIMUP - Institute of Molecular Pathology and Immunology from the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Portugal
| | - Emerson S. Bernardes
- Department of Radiopharmacy, Nuclear Energy Research Institute, Radiopharmacy Center, São Paulo, Brazil
| |
Collapse
|
5
|
Cardoso ACF, Andrade LNDS, Bustos SO, Chammas R. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments. Front Oncol 2016; 6:127. [PMID: 27242966 PMCID: PMC4876484 DOI: 10.3389/fonc.2016.00127] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/10/2016] [Indexed: 01/25/2023] Open
Abstract
Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular galectin-3.
Collapse
Affiliation(s)
- Ana Carolina Ferreira Cardoso
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| | - Luciana Nogueira de Sousa Andrade
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| | - Silvina Odete Bustos
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| | - Roger Chammas
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| |
Collapse
|
6
|
Priglinger CS, Obermann J, Szober CM, Merl-Pham J, Ohmayer U, Behler J, Gruhn F, Kreutzer TC, Wertheimer C, Geerlof A, Priglinger SG, Hauck SM. Epithelial-to-Mesenchymal Transition of RPE Cells In Vitro Confers Increased β1,6-N-Glycosylation and Increased Susceptibility to Galectin-3 Binding. PLoS One 2016; 11:e0146887. [PMID: 26760037 PMCID: PMC4712018 DOI: 10.1371/journal.pone.0146887] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/24/2015] [Indexed: 12/03/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells is a crucial event in the onset of proliferative vitreoretinopathy (PVR), the most common reason for treatment failure in retinal detachment surgery. We studied alterations in the cell surface glycan expression profile upon EMT of RPE cells and focused on its relevance for the interaction with galectin-3 (Gal-3), a carbohydrate binding protein, which can inhibit attachment and spreading of human RPE cells in a dose- and carbohydrate-dependent manner, and thus bares the potential to counteract PVR-associated cellular events. Lectin blot analysis revealed that EMT of RPE cells in vitro confers a glycomic shift towards an abundance of Thomsen-Friedenreich antigen, poly-N-acetyllactosamine chains, and complex-type branched N-glycans. Using inhibitors of glycosylation we found that both, binding of Gal-3 to the RPE cell surface and Gal-3-mediated inhibition of RPE attachment and spreading, strongly depend on the interaction of Gal-3 with tri- or tetra-antennary complex type N-glycans and sialylation of glycans but not on complex-type O-glycans. Importantly, we found that β1,6 N-acetylglucosaminyltransferase V (Mgat5), the key enzyme catalyzing the synthesis of tetra- or tri-antennary complex type N-glycans, is increased upon EMT of RPE cells. Silencing of Mgat5 by siRNA and CRISPR-Cas9 genome editing resulted in reduced Gal-3 binding. We conclude from these data that binding of recombinant Gal-3 to the RPE cell surface and inhibitory effects on RPE attachment and spreading largely dependent on interaction with Mgat5 modified N-glycans, which are more abundant on dedifferentiated than on the healthy, native RPE cells. Based on these findings we hypothesize that EMT of RPE cells in vitro confers glycomic changes, which account for high affinity binding of recombinant Gal-3, particularly to the cell surface of myofibroblastic RPE. From a future perspective recombinant Gal-3 may disclose a therapeutic option allowing for selectively targeting RPE cells with pathogenic relevance for development of PVR.
Collapse
Affiliation(s)
- Claudia S. Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| | - Jara Obermann
- Research Unit Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | | | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Uli Ohmayer
- Research Unit Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Jennifer Behler
- Research Unit Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Fabian Gruhn
- Research Unit Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Thomas C. Kreutzer
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Arie Geerlof
- Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| |
Collapse
|
7
|
Balabanova L, Golotin V, Podvolotskaya A, Rasskazov V. Genetically modified proteins: functional improvement and chimeragenesis. Bioengineered 2015. [PMID: 26211369 DOI: 10.1080/21655979.2015.1075674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This review focuses on the emerging role of site-specific mutagenesis and chimeragenesis for the functional improvement of proteins in areas where traditional protein engineering methods have been extensively used and practically exhausted. The novel path for the creation of the novel proteins has been created on the farther development of the new structure and sequence optimization algorithms for generating and designing the accurate structure models in result of x-ray crystallography studies of a lot of proteins and their mutant forms. Artificial genetic modifications aim to expand nature's repertoire of biomolecules. One of the most exciting potential results of mutagenesis or chimeragenesis finding could be design of effective diagnostics, bio-therapeutics and biocatalysts. A sampling of recent examples is listed below for the in vivo and in vitro genetically improvement of various binding protein and enzyme functions, with references for more in-depth study provided for the reader's benefit.
Collapse
Affiliation(s)
- Larissa Balabanova
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia.,b Far Eastern Federal University ; Vladivostok , Russia
| | - Vasily Golotin
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia.,b Far Eastern Federal University ; Vladivostok , Russia
| | | | - Valery Rasskazov
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia
| |
Collapse
|
8
|
Balabanova L, Golotin V, Kovalchuk S, Bulgakov A, Likhatskaya G, Son O, Rasskazov V. A novel bifunctional hybrid with marine bacterium alkaline phosphatase and Far Eastern holothurian mannan-binding lectin activities. PLoS One 2014; 9:e112729. [PMID: 25397876 PMCID: PMC4232515 DOI: 10.1371/journal.pone.0112729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP) and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ) was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25 ± 5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens.
Collapse
Affiliation(s)
- Larissa Balabanova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Vasily Golotin
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Svetlana Kovalchuk
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Alexander Bulgakov
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Galina Likhatskaya
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Oksana Son
- School of Economics and Management, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Valery Rasskazov
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
9
|
Melo FHM, Butera D, Junqueira MDS, Hsu DK, Moura da Silva AM, Liu FT, Santos MF, Chammas R. The promigratory activity of the matricellular protein galectin-3 depends on the activation of PI-3 kinase. PLoS One 2011; 6:e29313. [PMID: 22216245 PMCID: PMC3247242 DOI: 10.1371/journal.pone.0029313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 11/25/2011] [Indexed: 12/16/2022] Open
Abstract
Expression of galectin-3 is associated with sarcoma progression, invasion and metastasis. Here we determined the role of extracellular galectin-3 on migration of sarcoma cells on laminin-111. Cell lines from methylcholanthrene-induced sarcomas from both wild type and galectin-3−/− mice were established. Despite the presence of similar levels of laminin-binding integrins on the cell surface, galectin-3−/− sarcoma cells were more adherent and less migratory than galectin-3+/+ sarcoma cells on laminin-111. When galectin-3 was transiently expressed in galectin-3−/− sarcoma cells, it inhibited cell adhesion and stimulated the migratory response to laminin in a carbohydrate-dependent manner. Extracellular galectin-3 led to the recruitment of SHP-2 phosphatase to focal adhesion plaques, followed by a decrease in the amount of phosphorylated FAK and phospho-paxillin in the lamellipodia of migrating cells. The promigratory activity of extracellular galectin-3 was inhibitable by wortmannin, implicating the activation of a PI-3 kinase dependent pathway in the galectin-3 triggered disruption of adhesion plaques, leading to sarcoma cell migration on laminin-111.
Collapse
Affiliation(s)
- Fabiana H. M. Melo
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Diego Butera
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Mara de Souza Junqueira
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel K. Hsu
- Department of Dermatology, University of California Davis, Davis, California, United States of America
| | | | - Fu-Tong Liu
- Department of Dermatology, University of California Davis, Davis, California, United States of America
| | - Marinilice F. Santos
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Instituto do Cancer do Estado de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Zhuo Y, Bellis SL. Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 2011; 286:5935-41. [PMID: 21173156 PMCID: PMC3057866 DOI: 10.1074/jbc.r110.191429] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectins are β-galactoside-binding lectins that regulate diverse cell behaviors, including adhesion, migration, proliferation, and apoptosis. Galectins can be expressed both intracellularly and extracellularly, and extracellular galectins mediate their effects by associating with cell-surface oligosaccharides. Despite intensive current interest in galectins, strikingly few studies have focused on a key enzyme that acts to inhibit galectin signaling, namely β-galactoside α2,6-sialyltransferase (ST6Gal-I). ST6Gal-I adds an α2,6-linked sialic acid to the terminal galactose of N-linked glycans, and this modification blocks galectin binding to β-galactosides. This minireview summarizes the evidence suggesting that ST6Gal-I activity serves as an "off switch" for galectin function.
Collapse
Affiliation(s)
- Ya Zhuo
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Susan L. Bellis
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
11
|
Buljan M, Šitum M, Tomas D, Milošević M, Krušlin B. Prognostic value of galectin-3 in primary cutaneous melanoma. J Eur Acad Dermatol Venereol 2010; 25:1174-81. [DOI: 10.1111/j.1468-3083.2010.03943.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
de Oliveira JT, de Matos AJ, Gomes J, Vilanova M, Hespanhol V, Manninen A, Rutteman G, Chammas R, Gartner F, Bernardes ES. Coordinated expression of galectin-3 and galectin-3-binding sites in malignant mammary tumors: implications for tumor metastasis. Glycobiology 2010; 20:1341-52. [DOI: 10.1093/glycob/cwq103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
13
|
Otake AH, Mattar AL, Freitas HC, Machado CML, Nonogaki S, Fujihara CK, Zatz R, Chammas R. Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma. Cancer Chemother Pharmacol 2009; 66:79-87. [PMID: 19771429 DOI: 10.1007/s00280-009-1136-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 09/08/2009] [Indexed: 12/22/2022]
Abstract
PURPOSE We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the anti-hypertensive drug losartan (LOS). RESULTS We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumor-associated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C. CONCLUSIONS Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.
Collapse
Affiliation(s)
- Andréia Hanada Otake
- Laboratório de Oncologia Experimental (LIM-24), Departamento de Radiologia e Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av Dr Arnaldo, 455 room 4112/4122, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhuo Y, Chammas R, Bellis SL. Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J Biol Chem 2008; 283:22177-85. [PMID: 18676377 DOI: 10.1074/jbc.m8000015200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In previous studies, we determined that beta1 integrins from human colon tumors have elevated levels of alpha2-6 sialylation, a modification added by beta-galactosamide alpha-2,6-sialyltranferase I (ST6Gal-I). Intriguingly, the beta1 integrin is thought to be a ligand for galectin-3 (gal-3), a tumor-associated lectin. The effects of gal-3 are complex; intracellular forms typically protect cells against apoptosis through carbohydrate-independent mechanisms, whereas secreted forms bind to cell surface oligosaccharides and induce apoptosis. In the current study, we tested whether alpha2-6 sialylation of the beta1 integrin modulates binding to extracellular gal-3. Herein we report that SW48 colonocytes lacking alpha2-6 sialylation exhibit beta1 integrin-dependent binding to gal-3-coated tissue culture plates; however, binding is attenuated upon forced expression of ST6Gal-I. Removal of alpha2-6 sialic acids from ST6Gal-I expressors by neuraminidase treatment restores gal-3 binding. Additionally, using a blot overlay approach, we determined that gal-3 binds directly and preferentially to unsialylated, as compared with alpha2-6-sialylated, beta1 integrins. To understand the physiologic consequences of gal-3 binding, cells were treated with gal-3 and monitored for apoptosis. Galectin-3 was found to induce apoptosis in parental SW48 colonocytes (unsialylated), whereas ST6Gal-I expressors were protected. Importantly, gal-3-induced apoptosis was inhibited by function blocking antibodies against the beta1 subunit, suggesting that beta1 integrins are critical transducers of gal-3-mediated effects on cell survival. Collectively, our results suggest that the coordinate up-regulation of gal-3 and ST6Gal-I, a feature that is characteristic of colon carcinoma, may confer tumor cells with a selective advantage by providing a mechanism for blockade of the pro-apoptotic effects of secreted gal-3.
Collapse
Affiliation(s)
- Ya Zhuo
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
15
|
Zhuo Y, Chammas R, Bellis SL. Sialylation of β1 Integrins Blocks Cell Adhesion to Galectin-3 and Protects Cells against Galectin-3-induced Apoptosis. J Biol Chem 2008. [DOI: 10.1074/jbc.m800015200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Chehrehasa F, Key B, St John JA. The cell surface carbohydrate blood group A regulates the selective fasciculation of regenerating accessory olfactory axons. Brain Res 2008; 1203:32-8. [PMID: 18316067 DOI: 10.1016/j.brainres.2008.01.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/15/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Cell surface carbohydrates are differentially expressed by discrete subpopulations of primary sensory axons in the mammalian main and accessory olfactory systems. It has been proposed that these carbohydrates provide a glycocode which mediates the sorting of these sensory axons as they project from the olfactory neuroepithelium to their central targets in the main and accessory olfactory bulbs during development. As the differential expression of cell surface carbohydrates on olfactory axons persists in the adult we have now investigated their role during regeneration. We have recently generated a line of transgenic mice, BGAT-Tg, that mis-express the blood group A (BGA) carbohydrate on all primary olfactory axons rather than just on accessory olfactory axons as in wild-type mice. Following unilateral bulbectomy, accessory and main olfactory axons regenerate and grow into the frontal cortex where they fill the cavity which remains after the olfactory bulb ablation. In wild-type mice, the regenerating BGA-expressing accessory olfactory axons selectively aggregated with each other in large bundles but clearly separated from the BGA-negative main olfactory axons. In contrast, in the BGAT-Tg transgenic mice in which all main and accessory axons express the BGA carbohydrate, the accessory olfactory axons failed to correctly separate from the main olfactory axons. Instead, these axons formed numerous small bundles interspersed with main olfactory axons. These data provide strong evidence that the restricted expression of BGA is in part responsible for the selective segregation of accessory olfactory axons.
Collapse
Affiliation(s)
- Fatemeh Chehrehasa
- National Centre for Adult Stem Cell Research, Griffith University, Nathan 4111, Queensland, Australia
| | | | | |
Collapse
|