1
|
Marelli C, Giacobbe DR, Limongelli A, Guastavino S, Campi C, Piana M, Bassetti M. Neural networks for the prediction of bacterial and fungal infections: current evidence and implications. J Chemother 2025:1-28. [PMID: 40285636 DOI: 10.1080/1120009x.2025.2492960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
In the present narrative review, we discuss the use of artificial neural networks (ANNs) for predicting bacterial and fungal infections based on commonly available clinical and laboratory data, focusing on promises and challenges of these machine learning models. For predicting different bacterial or fungal infections from data commonly found in electronical medical records, ANN models may reach, based on current literature, an acceptable performance for discriminating between infected and non-infected patients, and outperformed other machine learning (ML)-based models in 38.3% of the retrieved studies evaluating at least another ML approach. In the near future, as for other ML models, the use of ANNs could be leveraged to provide real-time support to clinicians in clinical decision-making processes, although further research is needed in terms of quality of data and explainability of ANN model predictions to better understand whether and how these techniques can be safely adopted in everyday clinical practice.
Collapse
Affiliation(s)
- Cristina Marelli
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessandro Limongelli
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Cristina Campi
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Piana
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Dedeene L, Van Elslande J, Dewitte J, Martens G, De Laere E, De Jaeger P, De Smet D. An artificial intelligence-driven support tool for prediction of urine culture test results. Clin Chim Acta 2024; 562:119854. [PMID: 38977169 DOI: 10.1016/j.cca.2024.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS We aimed to develop an easily deployable artificial intelligence (AI)-driven model for rapid prediction of urine culture test results. MATERIAL AND METHODS We utilized a training dataset (n = 34,584 urine samples) and two separate, unseen test sets (n = 10,083 and 9,289 samples). Various machine learning models were compared for diagnostic performance. Predictive parameters included urinalysis results (dipstick and flow cytometry), patient demographics (age and gender), and sample collection method. RESULTS Although more complex models achieved the highest AUCs for predicting positive cultures (highest: multilayer perceptron (MLP) with AUC of 0.884, 95% CI 0.878-0.89), multiple logistic regression (MLR) using only flow cytometry parameters achieved a very good AUC (0.858, 95% CI 0.852-0.865). To aid interpretation, prediction results of the MLP and MLR models were categorized based on likelihood ratio (LR) for positivity: highly unlikely (LR 0.1), unlikely (LR 0.3), grey zone (LR 0.9), likely (LR 5.0), and highly likely (LR 40). This resulted in 17%, 28%, 34%, 9%, and 13% of samples falling into each respective category for the MLR model and 20%, 26%, 31%, 7%, and 16% for the MLP model. CONCLUSIONS In conclusion, this robust model has the potential to assist clinicians in their decision-making process by providing insights prior to the availability of urine culture results in a significant portion of samples (∼2/3rd).
Collapse
Affiliation(s)
- Lieselot Dedeene
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Jan Van Elslande
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Jannes Dewitte
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Geert Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Emmanuel De Laere
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Peter De Jaeger
- RADar Innovation Center, AZ Delta General Hospital, Roeselare, Belgium
| | - Dieter De Smet
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium.
| |
Collapse
|
3
|
Shen L, An J, Wang N, Wu J, Yao J, Gao Y. Artificial intelligence and machine learning applications in urinary tract infections identification and prediction: a systematic review and meta-analysis. World J Urol 2024; 42:464. [PMID: 39088072 DOI: 10.1007/s00345-024-05145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) have been one of the most common bacterial infections in clinical practice worldwide. Artificial intelligence (AI) and machine learning (ML) based algorithms have been increasingly applied in UTI case identification and prediction. However, the overall performance of AI/ML algorithms in identifying and predicting UTI has not been evaluated. The purpose of this paper is to quantitatively evaluate the application value of AI/ML in identifying and predicting UTI cases. METHODS MEDLINE, EMBASE, Web of Science, and PubMed databases were systematically searched for articles published up to December 31, 2023. Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) and Prediction Model Risk of Bias Assessment Tool (PROBAST) were used to assess the risk of bias. Study characteristics and detailed algorithm information were extracted. Pooled sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were synthesized using a bivariate mix-effects model. Meta-regression and subgroup analysis were conducted to test the source of heterogeneity. RESULTS In total, 11 studies with 14 AI/ML models were included in the final meta-analysis. The overall pooled AUC was 0.89 (95%CI 0.86-0.92). Additionally, the pooled Sen, Spe, PLR, NLR, and DOR were 0.78 (95%CI 0.71-0.84), 0.89 (95%CI 0.83-0.93), 6.99 (95%CI 4.38-11.14), 0.25 (95%CI 0.18-0.34) and 28.07 (95%CI 14.27-55.20), respectively. The results of meta-regression suggested that reference standard definitions might be the source of heterogeneity. CONCLUSION AI/ML algorithms appear to be promising to help clinicians detect and identify patients at high risk of UTIs. However, further studies are demanded to evaluate the application value of AI/ML more thoroughly.
Collapse
Affiliation(s)
- Li Shen
- Department of Infection Control, Xi'an Hospital of Traditional Chinese Medicine, No.69 Feng Cheng 8th Road, Weiyang District, Xi'an, 710021, China
| | - Jialu An
- Department of Information Consultation, Library of Xi'an Jiaotong University, No.76 Yan Ta West Road, Yanta District, Xi'an, 710061, China
| | - Nanding Wang
- Department of Cardiology, Xi'an Hospital of Traditional Chinese Medicine, No.69 Feng Cheng 8th Road, Weiyang District, Xi'an, 710021, China
| | - Jin Wu
- Department of Clinical Laboratory, Xi'an Hospital of Traditional Chinese Medicine, No.69 Feng Cheng 8th Road, Weiyang District, Xi'an, 710021, China
| | - Jia Yao
- Experimental Center, Xi'an Hospital of Traditional Chinese Medicine, No.69 Feng Cheng 8th Road, Weiyang District, Xi'an, 710021, China
- Xi'an Academy of Traditional Chinese Medicine, No.69 Feng Cheng 8th Road, Weiyang District, Xi'an, 710021, China
| | - Yumei Gao
- Department of Infection Control, Xi'an Hospital of Traditional Chinese Medicine, No.69 Feng Cheng 8th Road, Weiyang District, Xi'an, 710021, China.
| |
Collapse
|
4
|
Naik N, Talyshinskii A, Shetty DK, Hameed BMZ, Zhankina R, Somani BK. Smart Diagnosis of Urinary Tract Infections: is Artificial Intelligence the Fast-Lane Solution? Curr Urol Rep 2024; 25:37-47. [PMID: 38112900 PMCID: PMC10787904 DOI: 10.1007/s11934-023-01192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI) can significantly improve physicians' workflow when examining patients with UTI. However, most contemporary reviews are focused on examining the usage of AI with a restricted quantity of data, analyzing only a subset of AI algorithms, or performing narrative work without analyzing all dedicated studies. Given the preceding, the goal of this work was to conduct a mini-review to determine the current state of AI-based systems as a support in UTI diagnosis. RECENT FINDINGS There are sufficient publications to comprehend the potential applications of artificial intelligence in the diagnosis of UTIs. Existing research in this field, in general, publishes performance metrics that are exemplary. However, upon closer inspection, many of the available publications are burdened with flaws associated with the improper use of artificial intelligence, such as the use of a small number of samples, their lack of heterogeneity, and the absence of external validation. AI-based models cannot be classified as full-fledged physician assistants in diagnosing UTIs due to the fact that these limitations and flaws represent only a portion of all potential obstacles. Instead, such studies should be evaluated as exploratory, with a focus on the importance of future work that complies with all rules governing the use of AI. AI algorithms have demonstrated their potential for UTI diagnosis. However, further studies utilizing large, heterogeneous, prospectively collected datasets, as well as external validations, are required to define the actual clinical workflow value of artificial intelligence.
Collapse
Affiliation(s)
- Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Ali Talyshinskii
- Department of Urology, Astana Medical University, Astana, 010000, Kazakhstan
| | - Dasharathraj K Shetty
- Department of Data Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - B M Zeeshan Hameed
- Department of Urology, Father Muller Medical College, Mangalore, 575002, Karnataka, India
- iTRUE-International Training and Research in Urology and Endourology, Manipal, 576104, Karnataka, India
| | - Rano Zhankina
- Department of Urology, Astana Medical University, Astana, 010000, Kazakhstan
| | - Bhaskar K Somani
- iTRUE-International Training and Research in Urology and Endourology, Manipal, 576104, Karnataka, India
- Department of Urology, University Hospital Southampton NHS Trust, Southampton, SO16 6YD, UK
| |
Collapse
|