1
|
Luf M, Begani P, Bowcock AM, Pfleger CM. Knockdown of PR-DUB subunit calypso in the developing Drosophila eye and wing results in mis-patterned tissues with altered size and shape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631961. [PMID: 39829919 PMCID: PMC11741251 DOI: 10.1101/2025.01.09.631961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The deubiquitinating enzyme BAP1, the catalytic subunit of the PR-DUB complex, is implicated in several cancers, in the familial cancer syndrome BAP1 Tumor Predisposition Syndrome, and in the neurodevelopmental disorder Küry -Isidor syndrome. In Drosophila, there are numerous reports in the literature describing developmental patterning phenotypes for several chromatin regulators including the discovery of Polycomb itself, but corresponding adult morphological phenotypes caused by developmental dysregulation of Drosophila BAP1 ortholog calypso ( caly ) are less well-described. We report here that knockdown of caly in the eye and wing produce concomitant chromatin dysregulation phenotypes. RNAi to caly in the early eye reduces survival and leads to changes in eye size and shape including eye outgrowths, some of which resemble homeotic transformations whereas others resemble tumor-like outgrowths seen in other fly cancer models. Mosaic eyes containing caly loss-of-function tissue phenocopy caly RNAi. Knocking down caly across the wing disrupts wing shape and patterning including effects on wing vein pattern. This phenotypic characterization reinforces the growing body of literature detailing developmental mis-patterning driven by chromatin dysregulation and serves as a baseline for future mechanistic studies to understand the role of BAP1 in development and disease. ARTICLE SUMMARY PR-DUB catalytic subunit deubiquitinating enzyme BAP1 plays an important role in tumor suppression and chromatin regulation. Whereas many chromatin regulators are well-characterized for their roles in patterning, the mis-patterning phenotypes in adult structure for dysregulating BAP1 ortholog calypso ( caly ) in development are less well described. We report mis-patterned adult eye and wing phenotypes caused by caly RNAi in the developing eye and wing respectively.
Collapse
|
2
|
Zhang S, Wang C, Qin S, Chen C, Bao Y, Zhang Y, Xu L, Liu Q, Zhao Y, Li K, Tang Z, Liu Y. Analyzing super-enhancer temporal dynamics reveals potential critical enhancers and their gene regulatory networks underlying skeletal muscle development. Genome Res 2024; 34:2190-2202. [PMID: 39433439 PMCID: PMC11694746 DOI: 10.1101/gr.278344.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Super-enhancers (SEs) govern the expression of genes defining cell identity. However, the dynamic landscape of SEs and their critical constituent enhancers involved in skeletal muscle development remains unclear. In this study, using pig as a model, we employed cleavage under targets and tagmentation (CUT&Tag) to profile the enhancer-associated histone modification marker H3K27ac in skeletal muscle across two prenatal and three postnatal stages, and investigated how SEs influence skeletal muscle development. We identify three SE families with distinct temporal dynamics: continuous (Con, 397), transient (TS, 434), and de novo (DN, 756). These SE families are associated with different temporal gene expression trajectories, biological functions, and DNA methylation levels. Notably, several lines of evidence suggest a potential prominent role of Con SEs in regulating porcine muscle development and meat traits. To pinpoint key cis-regulatory units in Con SEs, we developed an integrative approach that leverages information from eRNA annotation, genome-wide association study (GWAS) signals, and high-throughput capture self-transcribing active regulatory region sequencing (STARR-seq) experiments. Within Con SEs, we identify 20 candidate critical enhancers with meat and carcass-associated DNA variations that affect enhancer activity, and infer their upstream transcription factors and downstream target genes. As a proof of concept, we experimentally validate the role of one such enhancer and its potential target gene during myogenesis. Our findings reveal the dynamic regulatory features of SEs in skeletal muscle development and provide a general integrative framework for identifying critical enhancers underlying the formation of complex traits.
Collapse
Affiliation(s)
- Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghua Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhou Bao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yunxiang Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
3
|
Gurgo J, Walter JC, Fiche JB, Houbron C, Schaeffer M, Cavalli G, Bantignies F, Nollmann M. Multiplexed chromatin imaging reveals predominantly pairwise long-range coordination between Drosophila Polycomb genes. Cell Rep 2024; 43:114167. [PMID: 38691452 DOI: 10.1016/j.celrep.2024.114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
Polycomb (Pc) group proteins are transcriptional regulators with key roles in development, cell identity, and differentiation. Pc-bound chromatin regions form repressive domains that interact in 3D to assemble repressive nuclear compartments. Here, we use multiplexed chromatin imaging to investigate whether Pc compartments involve the clustering of multiple Pc domains during Drosophila development. Notably, 3D proximity between Pc targets is rare and involves predominantly pairwise interactions. These 3D proximities are particularly enhanced in segments where Pc genes are co-repressed. In addition, segment-specific expression of Hox Pc targets leads to their spatial segregation from Pc-repressed genes. Finally, non-Hox Pc targets are more proximal in regions where they are co-expressed. These results indicate that long-range Pc interactions are temporally and spatially regulated during differentiation and development but do not induce frequent clustering of multiple distant Pc genes.
Collapse
Affiliation(s)
- Julian Gurgo
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Christophe Houbron
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Marie Schaeffer
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France
| | - Giacomo Cavalli
- Institut de Génétique Humaine, CNRS UMR 9002, Université de Montpellier, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Frédéric Bantignies
- Institut de Génétique Humaine, CNRS UMR 9002, Université de Montpellier, 141 rue de la Cardonille, 34396 Montpellier, France.
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
4
|
Li Y, Mo Y, Chen C, He J, Guo Z. Research advances of polycomb group proteins in regulating mammalian development. Front Cell Dev Biol 2024; 12:1383200. [PMID: 38505258 PMCID: PMC10950033 DOI: 10.3389/fcell.2024.1383200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Polycomb group (PcG) proteins are a subset of epigenetic factors that are highly conserved throughout evolution. In mammals, PcG proteins can be classified into two muti-proteins complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Increasing evidence has demonstrated that PcG complexes play critical roles in the regulation of gene expression, genomic imprinting, chromosome X-inactivation, and chromatin structure. Accordingly, the dysfunction of PcG proteins is tightly orchestrated with abnormal developmental processes. Here, we summarized and discussed the current knowledge of the biochemical and molecular functions of PcG complexes, especially the PRC1 and PRC2 in mammalian development including embryonic development and tissue development, which will shed further light on the deep understanding of the basic knowledge of PcGs and their functions for reproductive health and developmental disorders.
Collapse
Affiliation(s)
| | | | | | - Jin He
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiheng Guo
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Gaskill MM, Soluri IV, Branks AE, Boka AP, Stadler MR, Vietor K, Huang HYS, Gibson TJ, Mukherjee A, Mir M, Blythe SA, Harrison MM. Localization of the Drosophila pioneer factor GAF to subnuclear foci is driven by DNA binding and required to silence satellite repeat expression. Dev Cell 2023; 58:1610-1624.e8. [PMID: 37478844 PMCID: PMC10528433 DOI: 10.1016/j.devcel.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
The eukaryotic genome is organized to enable the precise regulation of gene expression. This organization is established as the embryo transitions from a fertilized gamete to a totipotent zygote. To understand the factors and processes that drive genomic organization, we focused on the pioneer factor GAGA factor (GAF) that is required for early development in Drosophila. GAF transcriptionally activates the zygotic genome and is localized to subnuclear foci. This non-uniform distribution is driven by binding to highly abundant GA repeats. At GA repeats, GAF is necessary to form heterochromatin and silence transcription. Thus, GAF is required to establish both active and silent regions. We propose that foci formation enables GAF to have opposing transcriptional roles within a single nucleus. Our data support a model in which the subnuclear concentration of transcription factors acts to organize the nucleus into functionally distinct domains essential for the robust regulation of gene expression.
Collapse
Affiliation(s)
- Marissa M Gaskill
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella V Soluri
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Annemarie E Branks
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alan P Boka
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael R Stadler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine Vietor
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hao-Yu S Huang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Apratim Mukherjee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Roles of Polycomb Complexes in the Reconstruction of 3D Genome Architecture during Preimplantation Embryonic Development. Genes (Basel) 2022; 13:genes13122382. [PMID: 36553649 PMCID: PMC9778514 DOI: 10.3390/genes13122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The appropriate deployment of developmental programs depends on complex genetic information encoded by genomic DNA sequences and their positioning and contacts in the three-dimensional (3D) space within the nucleus. Current studies using novel techniques including, but not limited to, Hi-C, ChIA-PET, and Hi-ChIP reveal that regulatory elements (Res), such as enhancers and promoters, may participate in the precise regulation of expression of tissue-specific genes important for both embryogenesis and organogenesis by recruiting Polycomb Group (PcG) complexes. PcG complexes usually poise the transcription of developmental genes by forming Polycomb bodies to compact poised enhancers and promoters marked by H3K27me3 in the 3D space. Additionally, recent studies have also uncovered their roles in transcriptional activation. To better understand the full complexities in the mechanisms of how PcG complexes regulate transcription and long-range 3D contacts of enhancers and promoters during developmental programs, we outline novel insights regarding PcG-associated dramatic changes in the 3D chromatin conformation in developmental programs of early embryos and naïve-ground-state transitions of pluripotent embryonic stem cells (ESCs), and highlight the distinct roles of unique and common subunits of canonical and non-canonical PcG complexes in shaping genome architectures and transcriptional programs.
Collapse
|
7
|
p300/CBP sustains Polycomb silencing by non-enzymatic functions. Mol Cell 2022; 82:3580-3597.e9. [DOI: 10.1016/j.molcel.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022]
|
8
|
Hernández-Romero IA, Valdes VJ. De Novo Polycomb Recruitment and Repressive Domain Formation. EPIGENOMES 2022; 6:25. [PMID: 35997371 PMCID: PMC9397058 DOI: 10.3390/epigenomes6030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Every cell of an organism shares the same genome; even so, each cellular lineage owns a different transcriptome and proteome. The Polycomb group proteins (PcG) are essential regulators of gene repression patterning during development and homeostasis. However, it is unknown how the repressive complexes, PRC1 and PRC2, identify their targets and elicit new Polycomb domains during cell differentiation. Classical recruitment models consider the pre-existence of repressive histone marks; still, de novo target binding overcomes the absence of both H3K27me3 and H2AK119ub. The CpG islands (CGIs), non-core proteins, and RNA molecules are involved in Polycomb recruitment. Nonetheless, it is unclear how de novo targets are identified depending on the physiological context and developmental stage and which are the leading players stabilizing Polycomb complexes at domain nucleation sites. Here, we examine the features of de novo sites and the accessory elements bridging its recruitment and discuss the first steps of Polycomb domain formation and transcriptional regulation, comprehended by the experimental reconstruction of the repressive domains through time-resolved genomic analyses in mammals.
Collapse
Affiliation(s)
| | - Victor Julian Valdes
- Department of Cell Biology and Development, Institute of Cellular Physiology (IFC), National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
9
|
Wylie A, Jones AE, Das S, Lu WJ, Abrams JM. Distinct p53 isoforms code for opposing transcriptional outcomes. Dev Cell 2022; 57:1833-1846.e6. [PMID: 35820415 PMCID: PMC9378576 DOI: 10.1016/j.devcel.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
p53 genes are conserved transcriptional activators that respond to stress. These proteins can also downregulate genes, but the mechanisms are not understood and are generally assumed to be indirect. Here, we investigate synthetic and native cis-regulatory elements in Drosophila to examine opposing features of p53-mediated transcriptional control in vivo. We show that transcriptional repression by p53 operates continuously through canonical DNA binding sites that confer p53-dependent transactivation at earlier developmental stages. p53 transrepression is correlated with local H3K9me3 chromatin marks and occurs without the need for stress or Chk2. In sufficiency tests, two p53 isoforms qualify as transrepressors and a third qualifies as a transcriptional activator. Targeted isoform-specific knockouts dissociate these opposing transcriptional activities, highlighting features that are dispensable for transactivation but critical for repression and for proper germ cell formation. Together, these results demonstrate that certain p53 isoforms function as constitutive tissue-specific repressors, raising important implications for tumor suppression by the human counterpart.
Collapse
Affiliation(s)
- Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Hafer TL, Patra S, Tagami D, Kohwi M. Enhancer of trithorax/polycomb, Corto, regulates timing of hunchback gene relocation and competence in Drosophila neuroblasts. Neural Dev 2022; 17:3. [PMID: 35177098 PMCID: PMC8855600 DOI: 10.1186/s13064-022-00159-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Background Neural progenitors produce diverse cells in a stereotyped birth order, but can specify each cell type for only a limited duration. In the Drosophila embryo, neuroblasts (neural progenitors) specify multiple, distinct neurons by sequentially expressing a series of temporal identity transcription factors with each division. Hunchback (Hb), the first of the series, specifies early-born neuronal identity. Neuroblast competence to generate early-born neurons is terminated when the hb gene relocates to the neuroblast nuclear lamina, rendering it refractory to activation in descendent neurons. Mechanisms and trans-acting factors underlying this process are poorly understood. Here we identify Corto, an enhancer of Trithorax/Polycomb (ETP) protein, as a new regulator of neuroblast competence. Methods We used the GAL4/UAS system to drive persistent misexpression of Hb in neuroblast 7–1 (NB7-1), a model lineage for which the early competence window has been well characterized, to examine the role of Corto in neuroblast competence. We used immuno-DNA Fluorescence in situ hybridization (DNA FISH) in whole embryos to track the position of the hb gene locus specifically in neuroblasts across developmental time, comparing corto mutants to control embryos. Finally, we used immunostaining in whole embryos to examine Corto’s role in repression of Hb and a known target gene, Abdominal B (Abd-B). Results We found that in corto mutants, the hb gene relocation to the neuroblast nuclear lamina is delayed and the early competence window is extended. The delay in gene relocation occurs after hb transcription is already terminated in the neuroblast and is not due to prolonged transcriptional activity. Further, we find that Corto genetically interacts with Posterior Sex Combs (Psc), a core subunit of polycomb group complex 1 (PRC1), to terminate early competence. Loss of Corto does not result in derepression of Hb or its Hox target, Abd-B, specifically in neuroblasts. Conclusions These results show that in neuroblasts, Corto genetically interacts with PRC1 to regulate timing of nuclear architecture reorganization and support the model that distinct mechanisms of silencing are implemented in a step-wise fashion during development to regulate cell fate gene expression in neuronal progeny. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-022-00159-3.
Collapse
Affiliation(s)
- Terry L Hafer
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA.,Present Address: Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Sofiya Patra
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA
| | - Daiki Tagami
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA
| | - Minoree Kohwi
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY, 10027, USA. .,Kavli Institute for Brain Science, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
11
|
Lucas T, Hafer TL, Zhang HG, Molotkova N, Kohwi M. Discrete cis-acting element regulates developmentally timed gene-lamina relocation and neural progenitor competence in vivo. Dev Cell 2021; 56:2649-2663.e6. [PMID: 34529940 PMCID: PMC8629127 DOI: 10.1016/j.devcel.2021.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023]
Abstract
The nuclear lamina is typically associated with transcriptional silencing, and peripheral relocation of genes highly correlates with repression. However, the DNA sequences and proteins regulating gene-lamina interactions are largely unknown. Exploiting the developmentally timed hunchback gene movement to the lamina in Drosophila neuroblasts, we identified a 250 bp intronic element (IE) both necessary and sufficient for relocation. The IE can target a reporter transgene to the lamina and silence it. Endogenously, however, hunchback is already repressed prior to relocation. Instead, IE-mediated relocation confers a heritably silenced gene state refractory to activation in descendent neurons, which terminates neuroblast competence to specify early-born identity. Surprisingly, we found that the Polycomb group chromatin factors bind the IE and are required for lamina relocation, revealing a nuclear architectural role distinct from their well-known function in transcriptional repression. Together, our results uncover in vivo mechanisms underlying neuroblast competence and lamina association in heritable gene silencing. In Drosophila neuroblasts, relocation of the hunchback gene locus to the nuclear lamina confers heritable silencing in daughter neurons. Lucas et al. identify a genomic element necessary and sufficient for hunchback gene movement in vivo. Polycomb proteins target this element for lamina relocation, thereby regulating competence, but not hunchback expression.
Collapse
Affiliation(s)
- Tanguy Lucas
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Terry L Hafer
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Harrison G Zhang
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Natalia Molotkova
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA
| | - Minoree Kohwi
- Department of Neuroscience, Mortimer B. Zuckerman Institute Mind Brain Behavior, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
12
|
Zoroddu S, Marchesi I, Bagella L. PRC2: an epigenetic multiprotein complex with a key role in the development of rhabdomyosarcoma carcinogenesis. Clin Epigenetics 2021; 13:156. [PMID: 34372908 PMCID: PMC8351429 DOI: 10.1186/s13148-021-01147-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Skeletal muscle formation represents a complex of highly organized and specialized systems that are still not fully understood. Epigenetic systems underline embryonic development, maintenance of stemness, and progression of differentiation. Polycomb group proteins play the role of gene silencing of stemness markers that regulate muscle differentiation. Enhancer of Zeste EZH2 is the catalytic subunit of the complex that is able to trimethylate lysine 27 of histone H3 and induce silencing of the involved genes. In embryonal Rhabdomyosarcoma and several other tumors, EZH2 is often deregulated and, in some cases, is associated with tumor malignancy. This review explores the molecular processes underlying the failure of muscle differentiation with a focus on the PRC2 complex. These considerations could open new studies aimed at the development of new cutting-edge therapeutic strategies in the onset of Rhabdomyosarcoma.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Irene Marchesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
- Kitos Biotech Srls, Tramariglio, Alghero, SS, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Chetverina D, Erokhin M, Schedl P. GAGA factor: a multifunctional pioneering chromatin protein. Cell Mol Life Sci 2021; 78:4125-4141. [PMID: 33528710 DOI: 10.1007/s00018-021-03776-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer-promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a "pioneer" factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
14
|
Min B, Park JS, Jeong YS, Jeon K, Kang YK. Dnmt1 binds and represses genomic retroelements via DNA methylation in mouse early embryos. Nucleic Acids Res 2020; 48:8431-8444. [PMID: 32667642 PMCID: PMC7470951 DOI: 10.1093/nar/gkaa584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide passive DNA demethylation in cleavage-stage mouse embryos is related to the cytoplasmic localization of the maintenance methyltransferase DNMT1. However, recent studies provided evidences of the nuclear localization of DNMT1 and its contribution to the maintenance of methylation levels of imprinted regions and other genomic loci in early embryos. Using the DNA adenine methylase identification method, we identified Dnmt1-binding regions in four- and eight-cell embryos. The unbiased distribution of Dnmt1 peaks in the genic regions (promoters and CpG islands) as well as the absence of a correlation between the Dnmt1 peaks and the expression levels of the peak-associated genes refutes the active participation of Dnmt1 in the transcriptional regulation of genes in the early developmental period. Instead, Dnmt1 was found to associate with genomic retroelements in a greatly biased fashion, particularly with the LINE1 (long interspersed nuclear elements) and ERVK (endogenous retrovirus type K) sequences. Transcriptomic analysis revealed that the transcripts of the Dnmt1-enriched retroelements were overrepresented in Dnmt1 knockdown embryos. Finally, methyl-CpG-binding domain sequencing proved that the Dnmt1-enriched retroelements, which were densely methylated in wild-type embryos, became demethylated in the Dnmt1-depleted embryos. Our results indicate that Dnmt1 is involved in the repression of retroelements through DNA methylation in early mouse development.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Young Sun Jeong
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, South Korea
| |
Collapse
|
15
|
Ghotbi E, Lackey K, Wong V, Thompson KT, Caston EG, Haddadi M, Benes J, Jones RS. Differential Contributions of DNA-Binding Proteins to Polycomb Response Element Activity at the Drosophila giant Gene. Genetics 2020; 214:623-634. [PMID: 31919108 PMCID: PMC7054010 DOI: 10.1534/genetics.119.302981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 11/18/2022] Open
Abstract
Polycomb-group (PcG) proteins are evolutionarily conserved epigenetic regulators whose primary function is to maintain the transcriptional repression of target genes. Recruitment of Drosophila melanogaster PcG proteins to target genes requires the presence of one or more Polycomb Response Elements (PREs). The functions or necessity for more than one PRE at a gene are not clear and individual PREs at some loci may have distinct regulatory roles. Various combinations of sequence-specific DNA-binding proteins are present at a given PRE, but only Pleiohomeotic (Pho) is present at all strong PREs. The giant (gt) locus has two PREs, a proximal PRE1 and a distal PRE2. During early embryonic development, Pho binds to PRE1 ∼30-min prior to stable binding to PRE2. This observation indicated a possible dependence of PRE2 on PRE1 for PcG recruitment; however, we find here that PRE2 recruits PcG proteins and maintains transcriptional repression independently of Pho binding to PRE1. Pho-like (Phol) is partially redundant with Pho during larval development and binds to the same DNA sequences in vitro Although binding of Pho to PRE1 is dependent on the presence of consensus Pho-Phol-binding sites, Phol binding is less so and appears to play a minimal role in recruiting other PcG proteins to gt Another PRE-binding protein, Sp1/Kruppel-like factor, is dependent on the presence of Pho for PRE1 binding. Further, we show that, in addition to silencing gene expression, PcG proteins dampen transcription of an active gene.
Collapse
Affiliation(s)
- Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Kristina Lackey
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Vicki Wong
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Katie T Thompson
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Evan G Caston
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Minna Haddadi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| |
Collapse
|
16
|
Genomic organization of Polycomb Response Elements and its functional implication in Drosophila and other insects. J Biosci 2020. [DOI: 10.1007/s12038-019-9975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Srinivasan A, Mishra RK. Genomic organization of Polycomb Response Elements and its functional implication in Drosophila and other insects. J Biosci 2020; 45:12. [PMID: 31965990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The epigenetic memory is an essential aspect of multicellular organisms to maintain several cell types and their gene expression pattern. This complex process uses a number of protein factors and specific DNA elements within the developmental cues to achieve this. The protein factors involved in the process are the Polycomb group (PcG) members, and, accordingly, the DNA sequences that interact with these proteins are called Polycomb Response Elements (PREs). Since the PcG proteins are highly conserved among higher eukaryotes, including insects, and function at thousands of sites in the genomes, it is expected that PREs mayalso be present across the genome.However, the studies on PREs in insect species, other thanDrosophila, is currently lacking.We took a bioinformatics approach to develop an inclusive PRE prediction tool, 'PRE Mapper', to address this need. By applying this tool on the Drosophila melanogaster genome, we predicted greater than 20,000 PREs.When comparedwith the available PRE prediction methods, this tool shows far better performance by correctly identifying the in vivo binding sites of PcG proteins, identified by genome-scale ChIP experiments. Further analysis of the predicted PREs shows their cohabitation with chromatin domain boundary elements at several places in the Drosophila genome, possibly defining a composite epigenetic module.We analysed 10 insect genomes in this context and find several conserved features in PREs across the insect species with some variations in their occurrence frequency. These analyses leading to the identification of PREin insect genomes contribute to our understanding of epigenetic mechanisms in these organisms.
Collapse
Affiliation(s)
- Arumugam Srinivasan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
18
|
Bredesen BA, Rehmsmeier M. DNA sequence models of genome-wide Drosophila melanogaster Polycomb binding sites improve generalization to independent Polycomb Response Elements. Nucleic Acids Res 2019; 47:7781-7797. [PMID: 31340029 PMCID: PMC6735708 DOI: 10.1093/nar/gkz617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Polycomb Response Elements (PREs) are cis-regulatory DNA elements that maintain gene transcription states through DNA replication and mitosis. PREs have little sequence similarity, but are enriched in a number of sequence motifs. Previous methods for modelling Drosophila melanogaster PRE sequences (PREdictor and EpiPredictor) have used a set of 7 motifs and a training set of 12 PREs and 16-23 non-PREs. Advances in experimental methods for mapping chromatin binding factors and modifications has led to the publication of several genome-wide sets of Polycomb targets. In addition to the seven motifs previously used, PREs are enriched in the GTGT motif, recently associated with the sequence-specific DNA binding protein Combgap. We investigated whether models trained on genome-wide Polycomb sites generalize to independent PREs when trained with control sequences generated by naive PRE models and including the GTGT motif. We also developed a new PRE predictor: SVM-MOCCA. Training PRE predictors with genome-wide experimental data improves generalization to independent data, and SVM-MOCCA predicts the majority of PREs in three independent experimental sets. We present 2908 candidate PREs enriched in sequence and chromatin signatures. 2412 of these are also enriched in H3K4me1, a mark of Trithorax activated chromatin, suggesting that PREs/TREs have a common sequence code.
Collapse
Affiliation(s)
- Bjørn André Bredesen
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Marc Rehmsmeier
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.,Integrated Research Institute (IRI) for the Life Sciences and Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
19
|
Abdusselamoglu MD, Landskron L, Bowman SK, Eroglu E, Burkard T, Kingston RE, Knoblich JA. Dynamics of activating and repressive histone modifications in Drosophila neural stem cell lineages and brain tumors. Development 2019; 146:dev.183400. [PMID: 31748204 DOI: 10.1242/dev.183400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
During central nervous system development, spatiotemporal gene expression programs mediate specific lineage decisions to generate neuronal and glial cell types from neural stem cells (NSCs). However, little is known about the epigenetic landscape underlying these highly complex developmental events. Here, we perform ChIP-seq on distinct subtypes of Drosophila FACS-purified NSCs and their differentiated progeny to dissect the epigenetic changes accompanying the major lineage decisions in vivo By analyzing active and repressive histone modifications, we show that stem cell identity genes are silenced during differentiation by loss of their activating marks and not via repressive histone modifications. Our analysis also uncovers a new set of genes specifically required for altering lineage patterns in type II neuroblasts (NBs), one of the two main Drosophila NSC identities. Finally, we demonstrate that this subtype specification in NBs, unlike NSC differentiation, requires Polycomb-group-mediated repression.
Collapse
Affiliation(s)
- Merve Deniz Abdusselamoglu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Lisa Landskron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Elif Eroglu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Thomas Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
20
|
Umer Z, Akhtar J, Khan MHF, Shaheen N, Haseeb MA, Mazhar K, Mithani A, Anwar S, Tariq M. Genome-wide RNAi screen in Drosophila reveals Enok as a novel trithorax group regulator. Epigenetics Chromatin 2019; 12:55. [PMID: 31547845 PMCID: PMC6757429 DOI: 10.1186/s13072-019-0301-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Background Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the specialization of cell types by maintaining differential gene expression patterns. Initially discovered as positive regulators of HOX genes in forward genetic screens, trxG counteracts PcG-mediated repression of cell type-specific genes. Despite decades of extensive analysis, molecular understanding of trxG action and regulation are still punctuated by many unknowns. This study aimed at discovering novel factors that elicit an anti-silencing effect to facilitate trxG-mediated gene activation. Results We have developed a cell-based reporter system and performed a genome-wide RNAi screen to discover novel factors involved in trxG-mediated gene regulation in Drosophila. We identified more than 200 genes affecting the reporter in a manner similar to trxG genes. From the list of top candidates, we have characterized Enoki mushroom (Enok), a known histone acetyltransferase, as an important regulator of trxG in Drosophila. Mutants of enok strongly suppressed extra sex comb phenotype of Pc mutants and enhanced homeotic transformations associated with trx mutations. Enok colocalizes with both TRX and PC at chromatin. Moreover, depletion of Enok specifically resulted in an increased enrichment of PC and consequently silencing of trxG targets. This downregulation of trxG targets was also accompanied by a decreased occupancy of RNA-Pol-II in the gene body, correlating with an increased stalling at the transcription start sites of these genes. We propose that Enok facilitates trxG-mediated maintenance of gene activation by specifically counteracting PcG-mediated repression. Conclusion Our ex vivo approach led to identification of new trxG candidate genes that warrant further investigation. Presence of chromatin modifiers as well as known members of trxG and their interactors in the genome-wide RNAi screen validated our reverse genetics approach. Genetic and molecular characterization of Enok revealed a hitherto unknown interplay between Enok and PcG/trxG system. We conclude that histone acetylation by Enok positively impacts the maintenance of trxG-regulated gene activation by inhibiting PRC1-mediated transcriptional repression.
Collapse
Affiliation(s)
- Zain Umer
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Najma Shaheen
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aziz Mithani
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Saima Anwar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.,Biomedical Engineering Centre, University of Engineering and Technology Lahore, KSK Campus, Lahore, Pakistan
| | - Muhammad Tariq
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
21
|
Parey E, Crombach A. Evolution of the Drosophila melanogaster Chromatin Landscape and Its Associated Proteins. Genome Biol Evol 2019; 11:660-677. [PMID: 30689829 PMCID: PMC6411481 DOI: 10.1093/gbe/evz019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
In the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin-associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin. These five types were given color names in reference to the Greek word chroma. They are defined by distinct but overlapping combinations of proteins and differ in biological and biochemical properties, including transcriptional activity, replication timing, and histone modifications. In this work, we assess the evolutionary relationships of chromatin-associated proteins and present an integrated view of the evolution and conservation of the fruit fly Drosophila melanogaster chromatin landscape. We combine homology prediction across a wide range of species with gene age inference methods to determine the origin of each chromatin-associated protein. This provides insight into the evolution of the different chromatin types. Our results indicate that for the euchromatic types, YELLOW and RED, young associated proteins are more specialized than old ones; and for genes found in either chromatin type, intron/exon structure is lineage-specific. Next, we provide evidence that a subset of GREEN-associated proteins is involved in a centromere drive in D. melanogaster. Our results on BLUE chromatin support the hypothesis that the emergence of Polycomb Group proteins is linked to eukaryotic multicellularity. In light of these results, we discuss how the regulatory complexification of chromatin links to the origins of eukaryotic multicellularity.
Collapse
Affiliation(s)
- Elise Parey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Anton Crombach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Université Paris, France.,Inria, Antenne Lyon La Doua, Villeurbanne, France.,Université de Lyon, INSA-Lyon, LIRIS, UMR 5205, Villeurbanne, France
| |
Collapse
|
22
|
Kurtz P, Jones AE, Tiwari B, Link N, Wylie A, Tracy C, Krämer H, Abrams JM. Drosophila p53 directs nonapoptotic programs in postmitotic tissue. Mol Biol Cell 2019; 30:1339-1351. [PMID: 30892991 PMCID: PMC6724604 DOI: 10.1091/mbc.e18-12-0791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
TP53 is the most frequently mutated gene in human cancers, and despite intensive research efforts, genome-scale studies of p53 function in whole animal models are rare. The need for such in vivo studies is underscored by recent challenges to established paradigms, indicating that unappreciated p53 functions contribute to cancer prevention. Here we leveraged the Drosophila system to interrogate p53 function in a postmitotic context. In the developing embryo, p53 robustly activates important apoptotic genes in response to radiation-induced DNA damage. We recently showed that a p53 enhancer (p53RErpr) near the cell death gene reaper forms chromatin contacts and enables p53 target activation across long genomic distances. Interestingly, we found that this canonical p53 apoptotic program fails to activate in adult heads. Moreover, this failure to exhibit apoptotic responses was not associated with altered chromatin contacts. Instead, we determined that p53 does not occupy the p53RErpr enhancer in this postmitotic tissue as it does in embryos. Through comparative RNA-seq and chromatin immunoprecipitation-seq studies of developing and postmitotic tissues, we further determined that p53 regulates distinct transcriptional programs in adult heads, including DNA repair, metabolism, and proteolysis genes. Strikingly, in the postmitotic context, p53-binding landscapes were poorly correlated with nearby transcriptional effects, raising the possibility that p53 enhancers could be generally acting through long distances.
Collapse
Affiliation(s)
- Paula Kurtz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amanda E. Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Charles Tracy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Helmut Krämer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John M. Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
23
|
Aughey GN, Cheetham SW, Southall TD. DamID as a versatile tool for understanding gene regulation. Development 2019; 146:146/6/dev173666. [PMID: 30877125 PMCID: PMC6451315 DOI: 10.1242/dev.173666] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
The interaction of proteins and RNA with chromatin underlies the regulation of gene expression. The ability to profile easily these interactions is fundamental for understanding chromatin biology in vivo. DNA adenine methyltransferase identification (DamID) profiles genome-wide protein-DNA interactions without antibodies, fixation or protein pull-downs. Recently, DamID has been adapted for applications beyond simple assaying of protein-DNA interactions, such as for studying RNA-chromatin interactions, chromatin accessibility and long-range chromosome interactions. Here, we provide an overview of DamID and introduce improvements to the technology, discuss their applications and compare alternative methodologies. Summary: This Primer provides an overview of DNA adenine methyltransferase identification (DamID), which is used to profile genome-wide chromatin interactions, and introduces recent improvements to the technology.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, UK
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, UK
| |
Collapse
|
24
|
Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 2019; 15:e1007932. [PMID: 30699116 PMCID: PMC6370247 DOI: 10.1371/journal.pgen.1007932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Proper determination of cell fates depends on epigenetic information that is used to preserve memory of decisions made earlier in development. Post-translational modification of histone residues is thought to be a central means by which epigenetic information is propagated. In particular, modifications of histone H3 lysine 27 (H3K27) are strongly correlated with both gene activation and gene repression. H3K27 acetylation is found at sites of active transcription, whereas H3K27 methylation is found at loci silenced by Polycomb group proteins. The histones bearing these modifications are encoded by the replication-dependent H3 genes as well as the replication-independent H3.3 genes. Owing to differential rates of nucleosome turnover, H3K27 acetylation is enriched on replication-independent H3.3 histones at active gene loci, and H3K27 methylation is enriched on replication-dependent H3 histones across silenced gene loci. Previously, we found that modification of replication-dependent H3K27 is required for Polycomb target gene silencing, but it is not required for gene activation. However, the contribution of replication-independent H3.3K27 to these functions is unknown. Here, we used CRISPR/Cas9 to mutate the endogenous replication-independent H3.3K27 to a non-modifiable residue. Surprisingly, we find that H3.3K27 is also required for Polycomb target gene silencing despite the association of H3.3 with active transcription. However, the requirement for H3.3K27 comes at a later stage of development than that found for replication-dependent H3K27, suggesting a greater reliance on replication-independent H3.3K27 in post-mitotic cells. Notably, we find no evidence of global transcriptional defects in H3.3K27 mutants, despite the strong correlation between H3.3K27 acetylation and active transcription. During development, naïve precursor cells acquire distinct identities through differential regulation of gene expression. The process of cell fate specification is progressive and depends on memory of prior developmental decisions. Maintaining cell identities over time is not dependent on changes in genome sequence. Instead, epigenetic mechanisms propagate information on cell identity by maintaining select sets of genes in either the on or off state. Chemical modifications of histone proteins, which package and organize the genome within cells, are thought to play a central role in epigenetic gene regulation. However, identifying which histone modifications are required for gene regulation, and defining the mechanisms through which they function in the maintenance of cell identity, remains a longstanding research challenge. Here, we focus on the role of histone H3 lysine 27 (H3K27). Modifications of H3K27 are associated with both gene activation and gene silencing (i.e. H3K27 acetylation and methylation, respectively). The histones bearing these modifications are encoded by different histone genes. One set of histone genes is only expressed during cell division, whereas the other set of histone genes is expressed in both dividing and non-dividing cells. Because most cells permanently stop dividing by the end of development, these “replication-independent” histone genes are potentially important for long-term maintenance of cell identity. In this study, we demonstrate that replication-independent H3K27 is required for gene silencing by the Polycomb group of epigenetic regulators. However, despite a strong correlation between replication-independent histones and active genes, we find that replication-independent H3K27 is not required for gene activation. As mutations in replication-independent H3K27 have recently been identified in human cancers, this work may help to inform the mechanisms by which histone mutations contribute to human disease.
Collapse
Affiliation(s)
- Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher M. Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - A. Gregory Matera
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Daniel J. McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
25
|
Alhaj Abed J, Ghotbi E, Ye P, Frolov A, Benes J, Jones RS. De novo recruitment of Polycomb-group proteins in Drosophila embryos. Development 2018; 145:dev.165027. [PMID: 30389849 DOI: 10.1242/dev.165027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Polycomb-group (PcG)-mediated transcriptional repression of target genes can be delineated into two phases. First, following initial repression of target genes by gene-specific transcription factors, PcG proteins recognize the repressed state and assume control of the genes' repression. Second, once the silenced state is established, PcG proteins may maintain repression through an indefinite number of cell cycles. Little is understood about how PcG proteins initially recognize the repressed state of target genes and the steps leading to de novo establishment of PcG-mediated repression. We describe a genetic system in which a Drosophila PcG target gene, giant (gt), is ubiquitously repressed during early embryogenesis by a maternally expressed transcription factor, and show the temporal recruitment of components of three PcG protein complexes: PhoRC, PRC1 and PRC2. We show that de novo PcG recruitment follows a temporal hierarchy in which PhoRC stably localizes at the target gene at least 1 h before stable recruitment of PRC2 and concurrent trimethylation of histone H3 at lysine 27 (H3K27me3). The presence of PRC2 and increased levels of H3K27me3 are found to precede stable binding by PRC1.
Collapse
Affiliation(s)
- Jumana Alhaj Abed
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Piao Ye
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Alexander Frolov
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| |
Collapse
|
26
|
La Fortezza M, Grigolon G, Cosolo A, Pindyurin A, Breimann L, Blum H, van Steensel B, Classen AK. DamID profiling of dynamic Polycomb-binding sites in Drosophila imaginal disc development and tumorigenesis. Epigenetics Chromatin 2018; 11:27. [PMID: 29871666 PMCID: PMC5987561 DOI: 10.1186/s13072-018-0196-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tracking dynamic protein–chromatin interactions in vivo is key to unravel transcriptional and epigenetic transitions in development and disease. However, limited availability and heterogeneous tissue composition of in vivo source material impose challenges on many experimental approaches. Results Here we adapt cell-type-specific DamID-seq profiling for use in Drosophila imaginal discs and make FLP/FRT-based induction accessible to GAL driver-mediated targeting of specific cell lineages. In a proof-of-principle approach, we utilize ubiquitous DamID expression to describe dynamic transitions of Polycomb-binding sites during wing imaginal disc development and in a scrib tumorigenesis model. We identify Atf3 and Ets21C as novel Polycomb target genes involved in scrib tumorigenesis and suggest that target gene regulation by Atf3 and AP-1 transcription factors, as well as modulation of insulator function, plays crucial roles in dynamic Polycomb-binding at target sites. We establish these findings by DamID-seq analysis of wing imaginal disc samples derived from 10 larvae. Conclusions Our study opens avenues for robust profiling of small cell population in imaginal discs in vivo and provides insights into epigenetic changes underlying transcriptional responses to tumorigenic transformation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco La Fortezza
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Giovanna Grigolon
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Andrea Cosolo
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
| | - Alexey Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Laura Breimann
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Bas van Steensel
- Division Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany. .,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.
| |
Collapse
|
27
|
Funikov SY, Kulikova DA, Krasnov GS, Rezvykh AP, Chuvakova LN, Shostak NG, Zelentsova ES, Blumenstiel JP, Evgen’ev MB. Spontaneous gain of susceptibility suggests a novel mechanism of resistance to hybrid dysgenesis in Drosophila virilis. PLoS Genet 2018; 14:e1007400. [PMID: 29813067 PMCID: PMC5993320 DOI: 10.1371/journal.pgen.1007400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/08/2018] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
Syndromes of hybrid dysgenesis (HD) have been critical for our understanding of the transgenerational maintenance of genome stability by piRNA. HD in D. virilis represents a special case of HD since it includes simultaneous mobilization of a set of TEs that belong to different classes. The standard explanation for HD is that eggs of the responder strains lack an abundant pool of piRNAs corresponding to the asymmetric TE families transmitted solely by sperm. However, there are several strains of D. virilis that lack asymmetric TEs, but exhibit a "neutral" cytotype that confers resistance to HD. To characterize the mechanism of resistance to HD, we performed a comparative analysis of the landscape of ovarian small RNAs in strains that vary in their resistance to HD mediated sterility. We demonstrate that resistance to HD cannot be solely explained by a maternal piRNA pool that matches the assemblage of TEs that likely cause HD. In support of this, we have witnessed a cytotype shift from neutral (N) to susceptible (M) in a strain devoid of all major TEs implicated in HD. This shift occurred in the absence of significant change in TE copy number and expression of piRNAs homologous to asymmetric TEs. Instead, this shift is associated with a change in the chromatin profile of repeat sequences unlikely to be causative of paternal induction. Overall, our data suggest that resistance to TE-mediated sterility during HD may be achieved by mechanisms that are distinct from the canonical syndromes of HD.
Collapse
Affiliation(s)
- Sergei Y. Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lubov N. Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia G. Shostak
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Rybina OY, Rozovsky YM, Veselkina ER, Pasyukova EG. Polycomb/Trithorax group-dependent regulation of the neuronal gene Lim3 involved in Drosophila lifespan control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:451-462. [PMID: 29555581 DOI: 10.1016/j.bbagrm.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/18/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Molecular mechanisms governing gene expression and defining complex phenotypes are central to understanding the basics of development and aging. Here, we demonstrate that naturally occurring polymorphisms of the Lim3 regulatory region that are associated with variation in gene expression and Drosophila lifespan control are located exclusively in the Polycomb response element (PRE). We find that the Polycomb group (PcG) protein Polycomb (PC) is bound to the PRE only in embryos where Lim3 is present in both repressed and active states. In contrast, the Trithorax group (TrxG) protein absent, small, or homeotic discs 1 (ASH1) is bound downstream of the PRE, to a region adjacent to the Lim3 transcription start site in embryos and adult flies, in which Lim3 is in an active state. Furthermore, mutations in Pc and ash1 genes affect Lim3 expression depending on the structural integrity of the Lim3 PRE, thus confirming functional interactions between these proteins and Lim3 regulatory region. In addition, we demonstrate that the evolutionary conserved Lim3 core promoter provides basic Lim3 expression, whereas structural changes in the Lim3 PRE of distal promoter provide stage-, and tissue-specific Lim3 expression. Therefore, we hypothesize that PcG/TrxG proteins, which are directly involved in Lim3 transcription regulation, participate in lifespan control.
Collapse
Affiliation(s)
- Olga Y Rybina
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia; Federal State-Financed Educational Institution of Higher Professional Education, Moscow State Pedagogical University, M. Pirogovskaya Str. 1/1, Moscow 119991, Russia.
| | - Yakov M Rozovsky
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia
| | - Ekaterina R Veselkina
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia
| | - Elena G Pasyukova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
29
|
|
30
|
Kang H, Jung YL, McElroy KA, Zee BM, Wallace HA, Woolnough JL, Park PJ, Kuroda MI. Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila. Genes Dev 2017; 31:1988-2002. [PMID: 29070704 PMCID: PMC5710143 DOI: 10.1101/gad.305987.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/28/2017] [Indexed: 02/05/2023]
Abstract
Kang et al. confirm PRC1–Br140 and PRC1–Fs(1)h interactions and identify their genomic binding sites. PRC1–Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and BRD1 at bivalent loci in human ES cells. Regulatory decisions in Drosophila require Polycomb group (PcG) proteins to maintain the silent state and Trithorax group (TrxG) proteins to oppose silencing. Since PcG and TrxG are ubiquitous and lack apparent sequence specificity, a long-standing model is that targeting occurs via protein interactions; for instance, between repressors and PcG proteins. Instead, we found that Pc-repressive complex 1 (PRC1) purifies with coactivators Fs(1)h [female sterile (1) homeotic] and Enok/Br140 during embryogenesis. Fs(1)h is a TrxG member and the ortholog of BRD4, a bromodomain protein that binds to acetylated histones and is a key transcriptional coactivator in mammals. Enok and Br140, another bromodomain protein, are orthologous to subunits of a mammalian MOZ/MORF acetyltransferase complex. Here we confirm PRC1–Br140 and PRC1–Fs(1)h interactions and identify their genomic binding sites. PRC1–Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and a Br140 ortholog, BRD1, at bivalent loci in human embryonic stem (ES) cells. We propose that identification of PRC1–Br140 “bivalent complexes” in fly embryos supports and extends the bivalency model posited in mammalian cells, in which the coexistence of H3K4me3 and H3K27me3 at developmental promoters represents a poised transcriptional state. We further speculate that local competition between acetylation and deacetylation may play a critical role in the resolution of bivalent protein complexes during development.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Youngsook L Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Heather A Wallace
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jessica L Woolnough
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
32
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
33
|
Erceg J, Pakozdi T, Marco-Ferreres R, Ghavi-Helm Y, Girardot C, Bracken AP, Furlong EEM. Dual functionality of cis-regulatory elements as developmental enhancers and Polycomb response elements. Genes Dev 2017; 31:590-602. [PMID: 28381411 PMCID: PMC5393054 DOI: 10.1101/gad.292870.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/03/2017] [Indexed: 11/24/2022]
Abstract
Here, Erceg et al. studied the occupancy of the Drosophila PhoRC during embryogenesis and revealed extensive co-occupancy at developmental enhancers. By using an established in vivo assay for Polycomb response element (PRE) activity, they show that a subset of characterized developmental enhancers can function as PREs and silence transcription in a Polycomb-dependent manner, thereby suggesting that reuse of the same elements by the PcG system may help fine-tune gene expression and ensure the timely maintenance of cell identities. Developmental gene expression is tightly regulated through enhancer elements, which initiate dynamic spatio–temporal expression, and Polycomb response elements (PREs), which maintain stable gene silencing. These two cis-regulatory functions are thought to operate through distinct dedicated elements. By examining the occupancy of the Drosophila pleiohomeotic repressive complex (PhoRC) during embryogenesis, we revealed extensive co-occupancy at developmental enhancers. Using an established in vivo assay for PRE activity, we demonstrated that a subset of characterized developmental enhancers can function as PREs, silencing transcription in a Polycomb-dependent manner. Conversely, some classic Drosophila PREs can function as developmental enhancers in vivo, activating spatio–temporal expression. This study therefore uncovers elements with dual function: activating transcription in some cells (enhancers) while stably maintaining transcriptional silencing in others (PREs). Given that enhancers initiate spatio–temporal gene expression, reuse of the same elements by the Polycomb group (PcG) system may help fine-tune gene expression and ensure the timely maintenance of cell identities.
Collapse
Affiliation(s)
- Jelena Erceg
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Tibor Pakozdi
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Raquel Marco-Ferreres
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Yad Ghavi-Helm
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| |
Collapse
|
34
|
Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ, Blokhina T, Wolle D, Aoki T, Ryabykh V, Yates JR, Shidlovskii YV, Georgiev P, Schedl P, Chetverina D. The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS One 2017; 12:e0173602. [PMID: 28296955 PMCID: PMC5351981 DOI: 10.1371/journal.pone.0173602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/23/2017] [Indexed: 11/24/2022] Open
Abstract
The Drosophila GAGA factor (GAF) has an extraordinarily diverse set of functions that include the activation and silencing of gene expression, nucleosome organization and remodeling, higher order chromosome architecture and mitosis. One hypothesis that could account for these diverse activities is that GAF is able to interact with partners that have specific and dedicated functions. To test this possibility we used affinity purification coupled with high throughput mass spectrometry to identify GAF associated partners. Consistent with this hypothesis the GAF interacting network includes a large collection of factors and complexes that have been implicated in many different aspects of gene activity, chromosome structure and function. Moreover, we show that GAF interactions with a small subset of partners is direct; however for many others the interactions could be indirect, and depend upon intermediates that serve to diversify the functional capabilities of the GAF protein.
Collapse
Affiliation(s)
- Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mikhailova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - James J. Moresco
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tatiana Blokhina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Vladimir Ryabykh
- Institute of Animal Physiology, Biochemistry and Nutrition, Borovsk, Russia
| | - John R. Yates
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
- * E-mail: (DC); (PS); (PG)
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| |
Collapse
|
35
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Comet I, Riising EM, Leblanc B, Helin K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer 2016; 16:803-810. [PMID: 27658528 DOI: 10.1038/nrc.2016.83] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of Polycomb repressive complex 2 (PRC2), has attracted broad research attention in the past few years because of its involvement in the development and maintenance of many types of cancer and the use of specific EZH2 inhibitors in clinical trials. Several observations show that PRC2 can have both oncogenic and tumour-suppressive functions. We propose that these apparently opposing roles of PRC2 in cancer are a consequence of the molecular function of the complex in maintaining, rather than specifying, the transcriptional repression state of its several thousand target genes.
Collapse
Affiliation(s)
- Itys Comet
- Biotech Research and Innovation Centre (BRIC) and the Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Eva M Riising
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin Leblanc
- Biotech Research and Innovation Centre (BRIC) and the Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC) and the Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
37
|
Loubière V, Delest A, Thomas A, Bonev B, Schuettengruber B, Sati S, Martinez AM, Cavalli G. Coordinate redeployment of PRC1 proteins suppresses tumor formation during Drosophila development. Nat Genet 2016; 48:1436-1442. [PMID: 27643538 PMCID: PMC5407438 DOI: 10.1038/ng.3671] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Polycomb group proteins form two main complexes, PRC2 and PRC1, which generally coregulate their target genes. Here we show that PRC1 components act as neoplastic tumor suppressors independently of PRC2 function. By mapping the distribution of PRC1 components and trimethylation of histone H3 at Lys27 (H3K27me3) across the genome, we identify a large set of genes that acquire PRC1 in the absence of H3K27me3 in Drosophila larval tissues. These genes massively outnumber canonical targets and are mainly involved in the regulation of cell proliferation, signaling and polarity. Alterations in PRC1 components specifically deregulate this set of genes, whereas canonical targets are derepressed in both PRC1 and PRC2 mutants. In human embryonic stem cells, PRC1 components colocalize with H3K27me3 as in Drosophila embryos, whereas in differentiated cell types they are selectively recruited to a large set of proliferation and signaling-associated genes that lack H3K27me3, suggesting that the redeployment of PRC1 components during development is evolutionarily conserved.
Collapse
Affiliation(s)
- Vincent Loubière
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Anna Delest
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Aubin Thomas
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Boyan Bonev
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Satish Sati
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UPR1142 CNRS, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Universite de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
38
|
Shlyueva D, Meireles-Filho ACA, Pagani M, Stark A. Genome-Wide Ultrabithorax Binding Analysis Reveals Highly Targeted Genomic Loci at Developmental Regulators and a Potential Connection to Polycomb-Mediated Regulation. PLoS One 2016; 11:e0161997. [PMID: 27575958 PMCID: PMC5004984 DOI: 10.1371/journal.pone.0161997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022] Open
Abstract
Hox homeodomain transcription factors are key regulators of animal development. They specify the identity of segments along the anterior-posterior body axis in metazoans by controlling the expression of diverse downstream targets, including transcription factors and signaling pathway components. The Drosophila melanogaster Hox factor Ultrabithorax (Ubx) directs the development of thoracic and abdominal segments and appendages, and loss of Ubx function can lead for example to the transformation of third thoracic segment appendages (e.g. halters) into second thoracic segment appendages (e.g. wings), resulting in a characteristic four-wing phenotype. Here we present a Drosophila melanogaster strain with a V5-epitope tagged Ubx allele, which we employed to obtain a high quality genome-wide map of Ubx binding sites using ChIP-seq. We confirm the sensitivity of the V5 ChIP-seq by recovering 7/8 of well-studied Ubx-dependent cis-regulatory regions. Moreover, we show that Ubx binding is predictive of enhancer activity as suggested by comparison with a genome-scale resource of in vivo tested enhancer candidates. We observed densely clustered Ubx binding sites at 12 extended genomic loci that included ANTP-C, BX-C, Polycomb complex genes, and other regulators and the clustered binding sites were frequently active enhancers. Furthermore, Ubx binding was detected at known Polycomb response elements (PREs) and was associated with significant enrichments of Pc and Pho ChIP signals in contrast to binding sites of other developmental TFs. Together, our results show that Ubx targets developmental regulators via strongly clustered binding sites and allow us to hypothesize that regulation by Ubx might involve Polycomb group proteins to maintain specific regulatory states in cooperative or mutually exclusive fashion, an attractive model that combines two groups of proteins with prominent gene regulatory roles during animal development.
Collapse
Affiliation(s)
- Daria Shlyueva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | | | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| |
Collapse
|
39
|
Vogel MJ, Peric-Hupkes D, van Steensel B. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing. Nat Protoc 2016; 2:1467-78. [PMID: 17545983 DOI: 10.1038/nprot.2007.148] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.
Collapse
Affiliation(s)
- Maartje J Vogel
- Division of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Formation of a Polycomb-Domain in the Absence of Strong Polycomb Response Elements. PLoS Genet 2016; 12:e1006200. [PMID: 27466807 PMCID: PMC4965088 DOI: 10.1371/journal.pgen.1006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain.
Collapse
|
41
|
Establishment of a Developmental Compartment Requires Interactions between Three Synergistic Cis-regulatory Modules. PLoS Genet 2015; 11:e1005376. [PMID: 26468882 PMCID: PMC4607503 DOI: 10.1371/journal.pgen.1005376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/19/2015] [Indexed: 12/28/2022] Open
Abstract
The subdivision of cell populations in compartments is a key event during animal development. In Drosophila, the gene apterous (ap) divides the wing imaginal disc in dorsal vs ventral cell lineages and is required for wing formation. ap function as a dorsal selector gene has been extensively studied. However, the regulation of its expression during wing development is poorly understood. In this study, we analyzed ap transcriptional regulation at the endogenous locus and identified three cis-regulatory modules (CRMs) essential for wing development. Only when the three CRMs are combined, robust ap expression is obtained. In addition, we genetically and molecularly analyzed the trans-factors that regulate these CRMs. Our results propose a three-step mechanism for the cell lineage compartment expression of ap that includes initial activation, positive autoregulation and Trithorax-mediated maintenance through separable CRMs. The separation of cell populations into distinct functional units is essential for both vertebrate and invertebrate animal development. A classical paradigm for this phenomenon is the establishment of developmental compartments during Drosophila wing development. These compartments depend on the restricted expression of two selector genes, engrailed in the posterior compartment and apterous (ap) in the dorsal compartment. Yet, despite the central role these genes and their restricted expression patterns play in Drosophila development, we still do not understand how these patterns are established or maintained. Here, by dissecting the regulatory sequences required for ap expression, we solve this problem for this critical selector gene. We used a combination of experimental approaches to identify and functionally characterize the cis-regulatory modules (CRMs) that regulate ap expression during Drosophila wing development. For these analyses we implement a novel technique allowing us to study the function of these CRMs in vivo, at the native ap locus. We found three ap CRMs crucial for wing development: the Early (apE) and the D/V (apDV) enhancers and the ap PRE (apP). Only when all three regulatory elements are combined is a uniform and complete ap expression domain generated. In summary, our results indicate that ap is regulated in time and space by a three-step mechanism that generates a lineage compartment by integrating input from separate CRMs for the initiation, refinement and maintenance of its expression.
Collapse
|
42
|
Aughey GN, Southall TD. Dam it's good! DamID profiling of protein-DNA interactions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:25-37. [PMID: 26383089 PMCID: PMC4737221 DOI: 10.1002/wdev.205] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 01/09/2023]
Abstract
The interaction of proteins with chromatin is fundamental for several essential cellular processes. During the development of an organism, genes must to be tightly regulated both temporally and spatially. This is achieved through the action of chromatin‐binding proteins such as transcription factors, histone modifiers, nucleosome remodelers, and lamins. Furthermore, protein–DNA interactions are important in the adult, where their perturbation can lead to disruption of homeostasis, metabolic dysregulation, and diseases such as cancer. Understanding the nature of these interactions is of paramount importance in almost all areas of molecular biological research. In recent years, DNA adenine methyltransferase identification (DamID) has emerged as one of the most comprehensive and versatile methods available for profiling protein–DNA interactions on a genomic scale. DamID has been used to map a variety of chromatin‐binding proteins in several model organisms and has the potential for continued adaptation and application in the field of genomic biology. WIREs Dev Biol 2016, 5:25–37. doi: 10.1002/wdev.205 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, UK
| |
Collapse
|
43
|
The Drosophila histone demethylase dKDM5/LID regulates hematopoietic development. Dev Biol 2015; 405:260-8. [DOI: 10.1016/j.ydbio.2015.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/12/2015] [Accepted: 07/12/2015] [Indexed: 01/08/2023]
|
44
|
Kang H, McElroy KA, Jung YL, Alekseyenko AA, Zee BM, Park PJ, Kuroda MI. Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila. Genes Dev 2015; 29:1136-50. [PMID: 26063573 PMCID: PMC4470282 DOI: 10.1101/gad.260562.115] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, Kang et al. investigate how PcG complexes form repressive chromatin domains. The findings show that Scm, a transcriptional repressor, is an important regulator of PRC1, PRC2, and transcriptional silencing and suggest that Scm coordinates PcG complexes and polymerizes, resulting in PcG silencing. The Polycomb group (PcG) proteins are key regulators of development in Drosophila and are strongly implicated in human health and disease. How PcG complexes form repressive chromatin domains remains unclear. Using cross-linked affinity purifications of BioTAP-Polycomb (Pc) or BioTAP-Enhancer of zeste [E(z)], we captured all PcG-repressive complex 1 (PRC1) or PRC2 core components and Sex comb on midleg (Scm) as the only protein strongly enriched with both complexes. Although previously not linked to PRC2, we confirmed direct binding of Scm and PRC2 using recombinant protein expression and colocalization of Scm with PRC1, PRC2, and H3K27me3 in embryos and cultured cells using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing). Furthermore, we found that RNAi knockdown of Scm and overexpression of the dominant-negative Scm-SAM (sterile α motif) domain both affected the binding pattern of E(z) on polytene chromosomes. Aberrant localization of the Scm-SAM domain in long contiguous regions on polytene chromosomes revealed its independent ability to spread on chromatin, consistent with its previously described ability to oligomerize in vitro. Pull-downs of BioTAP-Scm captured PRC1 and PRC2 and additional repressive complexes, including PhoRC, LINT, and CtBP. We propose that Scm is a key mediator connecting PRC1, PRC2, and transcriptional silencing. Combined with previous structural and genetic analyses, our results strongly suggest that Scm coordinates PcG complexes and polymerizes to produce broad domains of PcG silencing.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Youngsook Lucy Jung
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Artyom A Alekseyenko
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
45
|
Bouveret R, Waardenberg AJ, Schonrock N, Ramialison M, Doan T, de Jong D, Bondue A, Kaur G, Mohamed S, Fonoudi H, Chen CM, Wouters MA, Bhattacharya S, Plachta N, Dunwoodie SL, Chapman G, Blanpain C, Harvey RP. NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. eLife 2015; 4. [PMID: 26146939 PMCID: PMC4548209 DOI: 10.7554/elife.06942] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022] Open
Abstract
We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformation-specific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gain-of-function in congenital heart disease.
Collapse
Affiliation(s)
- Romaric Bouveret
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Nicole Schonrock
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Tram Doan
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Danielle de Jong
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Antoine Bondue
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Gurpreet Kaur
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Hananeh Fonoudi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Chiann-Mun Chen
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Merridee A Wouters
- Bioinformatics, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicolas Plachta
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Cédric Blanpain
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
46
|
Mozzetta C, Pontis J, Ait-Si-Ali S. Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxid Redox Signal 2015; 22:1365-81. [PMID: 25365549 PMCID: PMC4432786 DOI: 10.1089/ars.2014.6116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Methylation of histone H3 on lysine 9 and 27 (H3K9 and H3K27) are two epigenetic modifications that have been linked to several crucial biological processes, among which are transcriptional silencing and cell differentiation. RECENT ADVANCES Deposition of these marks is catalyzed by H3K9 lysine methyltransferases (KMTs) and polycomb repressive complex 2, respectively. Increasing evidence is emerging in favor of a functional crosstalk between these two major KMT families. CRITICAL ISSUES Here, we review the current knowledge on the mechanisms of action and function of these enzymes, with particular emphasis on their interplay in the regulation of chromatin states and biological processes. We outline their crucial roles played in tissue homeostasis, by controlling the fate of embryonic and tissue-specific stem cells, highlighting how their deregulation is often linked to the emergence of a number of malignancies and neurological disorders. FUTURE DIRECTIONS Histone methyltransferases are starting to be tested as drug targets. A new generation of highly selective chemical inhibitors is starting to emerge. These hold great promise for a rapid translation of targeting epigenetic drugs into clinical practice for a number of aggressive cancers and neurological disorders.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot , Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
47
|
Blanch M, Piñeyro D, Bernués J. New insights for Drosophila GAGA factor in larvae. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150011. [PMID: 26064623 PMCID: PMC4448821 DOI: 10.1098/rsos.150011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
GAGA factor plays important roles during Drosophila embryogenesis and its maternal contribution is essential for early development. Here, the role of GAGA factor was studied in 3rd instar larvae using depletion and overexpression conditions in wing disc and transcriptome analysis. We found that genes changing expression were different to those previously described using GAGA mutants in embryos. No apparent phenotypes on GAGA depletion could usually be observed at larval stages in imaginal discs but a strong effect on salivary gland polytene chromosomes was observed. In the adult, GAGA depletion produced many defects like abnormal cell proliferation in the wing, impaired dorsal closure and resulted in homeotic transformation of abdominal segment A5. Unexpectedly, no effects on Ultrabithorax expression were observed. Short overexpression of GAGA factor in 3rd instar larvae also resulted in activation of a set of genes not previously described to be under GAGA regulation, and in lethality at pupa. Our results suggest a little contribution of GAGA factor on gene transcription in wing discs and a change of the genes regulated in comparison with embryo. GAGA factor activity thus correlates with the global changes in gene expression that take place at the embryo-to-larva and, later, at the larva-to-pupa transitions.
Collapse
Affiliation(s)
- Marta Blanch
- Departament de Genòmica Molecular, Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona 08028, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - David Piñeyro
- Departament de Genòmica Molecular, Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona 08028, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - Jordi Bernués
- Departament de Genòmica Molecular, Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona 08028, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine, Barcelona, Spain
| |
Collapse
|
48
|
Slattery M, Ma L, Spokony RF, Arthur RK, Kheradpour P, Kundaje A, Nègre N, Crofts A, Ptashkin R, Zieba J, Ostapenko A, Suchy S, Victorsen A, Jameel N, Grundstad AJ, Gao W, Moran JR, Rehm EJ, Grossman RL, Kellis M, White KP. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster. Genome Res 2015; 24:1224-35. [PMID: 24985916 PMCID: PMC4079976 DOI: 10.1101/gr.168807.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development.
Collapse
Affiliation(s)
- Matthew Slattery
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Lijia Ma
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rebecca F Spokony
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert K Arthur
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Anshul Kundaje
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Nicolas Nègre
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA; Université de Montpellier II and INRA, UMR1333 DGIMI, F-34095 Montpellier, France
| | - Alex Crofts
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ryan Ptashkin
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer Zieba
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander Ostapenko
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah Suchy
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alec Victorsen
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Nader Jameel
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - A Jason Grundstad
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wenxuan Gao
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer R Moran
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - E Jay Rehm
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert L Grossman
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
49
|
Chromatin-Driven Behavior of Topologically Associating Domains. J Mol Biol 2015; 427:608-25. [DOI: 10.1016/j.jmb.2014.09.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
|
50
|
Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schujiers J, Lee TI, Zhao K, Young RA. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 2014; 159:374-387. [PMID: 25303531 PMCID: PMC4197132 DOI: 10.1016/j.cell.2014.09.030] [Citation(s) in RCA: 654] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 12/31/2022]
Abstract
The pluripotent state of embryonic stem cells (ESCs) is produced by active transcription of genes that control cell identity and repression of genes encoding lineage-specifying developmental regulators. Here, we use ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome. The results produce a map of enhancer-promoter interactions and reveal that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by cohesin. These looped structures form insulated neighborhoods whose integrity is important for proper expression of local genes. We also find that repressed genes encoding lineage-specifying developmental regulators occur within insulated neighborhoods. These results provide insights into the relationship between transcriptional control of cell identity genes and control of local chromosome structure.
Collapse
Affiliation(s)
- Jill M Dowen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Zi Peng Fan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Computational and Systems Biology Program
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Gang Ren
- Systems Biology Center, NHLBI, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- College of Animal Science and Technology, Northwest A&F University, Xi'An, P. R. China
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Lyndon N Zhang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Abraham S Weintraub
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Jurian Schujiers
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Keji Zhao
- Systems Biology Center, NHLBI, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|