1
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
2
|
Xu D, Zeng L, Wang L, Yang DL. Rice requires a chromatin remodeler for Polymerase IV-small interfering RNA production and genomic immunity. PLANT PHYSIOLOGY 2024; 194:2149-2164. [PMID: 37992039 DOI: 10.1093/plphys/kiad624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Transgenes are often spontaneously silenced, which hinders the application of genetic modifications to crop breeding. While gene silencing has been extensively studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanism of transgene silencing remains elusive in crop plants. We used rice (Oryza sativa) plants silenced for a 35S::OsGA2ox1 (Gibberellin 2-oxidase 1) transgene to isolate five elements mountain (fem) mutants showing restoration of transgene expression. In this study, we isolated multiple fem2 mutants defective in a homolog of Required to Maintain Repression 1 (RMR1) of maize (Zea mays) and CLASSY (CLSY) of Arabidopsis. In addition to failing to maintain transgene silencing, as occurs in fem3, in which mutation occurs in NUCLEAR RNA POLYMERASE E1 (OsNRPE1), the fem2 mutant failed to establish transgene silencing of 35S::OsGA2ox1. Mutation in FEM2 eliminated all RNA POLYMERASE IV (Pol-IV)-FEM1/OsRDR2 (RNA-DEPENDENT RNA POLYMERASE 2)-dependent small interfering RNAs (siRNAs), reduced DNA methylation on genome-wide scale in rice seedlings, caused pleiotropic developmental defects, and increased disease resistance. Simultaneous mutation in 2 FEM2 homologous genes, FEM2-Like 1 (FEL1) and FEL2, however, did not affect DNA methylation and rice development and disease resistance. The predominant expression of FEM2 over FEL1 and FEL2 in various tissues was likely caused by epigenetic states. Overexpression of FEL1 but not FEL2 partially rescued hypomethylation of fem2, indicating that FEL1 maintains the cryptic function. In summary, FEM2 is essential for establishing and maintaining gene silencing; moreover, FEM2 is solely required for Pol IV-FEM1 siRNA biosynthesis and de novo DNA methylation.
Collapse
Affiliation(s)
- Dachao Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjun Zeng
- Institute of Crop Sciences, Yichun Academy of Sciences, Yichun, 336000 Jiangxi, China
| | - Lili Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
CHROMOMETHYLTRANSFERASE3/KRYPTONITE maintains the sulfurea paramutation in Solanum lycopersicum. Proc Natl Acad Sci U S A 2022; 119:e2112240119. [PMID: 35324329 PMCID: PMC9060480 DOI: 10.1073/pnas.2112240119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
SignificanceParamutation involves the transfer of a repressive epigenetic mark between silent and active alleles. It is best known from exceptional non-Mendelian inheritance of conspicuous phenotypes in maize but also in other plants and animals. Recent genomic studies, however, indicate that paramutation may be less exceptional. It may be a consequence of wide-cross hybridization and may contribute to quantitative trait variation or unstable phenotypes in crops. Using the sulfurea (sulf) locus in tomato, we demonstrate that a self-reinforcing feedback loop involving DNA- and histone-methyl transferases CHROMOMETHYLTRANSFERASE3 (CMT3) and KRYPTONITE (KYP) is required for paramutation of sulf and that there is a change in chromatin organization. These findings advance the understanding of non-Mendelian inheritance in plants.
Collapse
|
4
|
Wang L, Zheng K, Zeng L, Xu D, Zhu T, Yin Y, Zhan H, Wu Y, Yang DL. Reinforcement of CHH methylation through RNA-directed DNA methylation ensures sexual reproduction in rice. PLANT PHYSIOLOGY 2022; 188:1189-1209. [PMID: 34791444 PMCID: PMC8825330 DOI: 10.1093/plphys/kiab531] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 05/23/2023]
Abstract
DNA methylation is an important epigenetic mark that regulates the expression of genes and transposons. RNA-directed DNA methylation (RdDM) is the main molecular pathway responsible for de novo DNA methylation in plants. Although the mechanism of RdDM has been well studied in Arabidopsis (Arabidopsis thaliana), most mutations in RdDM genes cause no remarkable developmental defects in Arabidopsis. Here, we isolated and cloned Five Elements Mountain 1 (FEM1), which encodes RNA-dependent RNA polymerase 2 (OsRDR2) in rice (Oryza sativa). Mutation in OsRDR2 abolished the accumulation of 24-nt small interfering RNAs, and consequently substantially decreased genome-wide CHH (H = A, C, or T) methylation. Moreover, male and female reproductive development was disturbed, which led to sterility in osrdr2 mutants. We discovered that OsRDR2-dependent DNA methylation may regulate the expression of multiple key genes involved in stamen development, meiosis, and pollen viability. In wild-type (WT) plants but not in osrdr2 mutants, genome-wide CHH methylation levels were greater in panicles, stamens, and pistils than in seedlings. The global increase of CHH methylation in reproductive organs of the WT was mainly explained by the enhancement of RdDM activity, which includes OsRDR2 activity. Our results, which revealed a global increase in CHH methylation through enhancement of RdDM activity in reproductive organs, suggest a crucial role for OsRDR2 in the sexual reproduction of rice.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kezhi Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjun Zeng
- Yichun Academy of Science, Yichun 336000, Jiangxi Province, China
| | - Dachao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yumeng Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Pereira R, Leitão JM. A Non-Rogue Mutant Line Induced by ENU Mutagenesis in Paramutated Rogue Peas ( Pisum sativum L.) Is Still Sensitive to the Rogue Paramutation. Genes (Basel) 2021; 12:1680. [PMID: 34828288 PMCID: PMC8623080 DOI: 10.3390/genes12111680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
The spontaneously emerging rogue phenotype in peas (Pisum sativum L.), characterized by narrow and pointed leaf stipula and leaflets, was the first identified case of the epigenetic phenomenon paramutation. The crosses of homozygous or heterozygous (e.g., F1) rogue plants with non-rogue (wild type) plants, produce exclusively rogue plants in the first and all subsequent generations. The fact that the wild phenotype disappears forever, is in clear contradiction with the Mendelian rules of inheritance, a situation that impedes the positional cloning of genes involved in this epigenetic phenomenon. One way of overcoming this obstacle is the identification of plant genotypes harboring naturally occurring or artificially induced neutral alleles, non-sensitive to paramutation. So far, such alleles have never been described for the pea rogue paramutation. Here, we report the induction via 1-ethyl-1-nitrosourea (ENU) mutagenesis of a non-rogue revertant mutant in the rogue cv. Progreta, and the completely unusual fixation of the induced non-rogue phenotype through several generations. The reversion of the methylation status of two previously identified differentially methylated genomic sequences in the induced non-rogue mutant, confirms that the rogue paramutation is accompanied by alterations in DNA methylation. Nevertheless, unexpectedly, the induced non-rogue mutant showed to be still sensitive to paramutation.
Collapse
Affiliation(s)
- Ricardo Pereira
- Laboratory of Genomics and Genetic Improvement, MED, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Corte Velada Investimentos, Monte Ruivo, PB 552X, 8600-237 Odiáxere, Portugal
| | - José M. Leitão
- Laboratory of Genomics and Genetic Improvement, MED, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
6
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
7
|
Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function. PLoS Genet 2020; 16:e1009243. [PMID: 33320854 PMCID: PMC7837471 DOI: 10.1371/journal.pgen.1009243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/26/2021] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process. Genes are switched “on” and “off” during normal development by regulating DNA accessibility within the chromosomes. How certain gene variants permanently maintain “off” states from one generation to the next remains unclear, but studies in multiple eukaryotes implicate roles for specific types of small RNAs, some of which define cytosine methylation patterns. In corn, these RNAs come from at least two RNA polymerase II-derived complexes sharing a common catalytic subunit (RPD1). Although RPD1 both controls the normal developmental switching of many genes and permanently maintains some of these “off” states across generations, how RPD1 function defines heritable DNA accessibility is unknown. We discovered that a protein (CHD3a) belonging to a group known to alter nucleosome positioning is also required to help maintain a heritable “off” state for one particular corn gene variant controlling both plant and flower color. We also found CHD3a necessary for normal plant development and sperm transmission consistent with the idea that proper nucleosome positioning defines evolutionarily-important gene expression patterns. Because both CHD3a and RPD1 maintain the heritable “off” state of a specific gene variant, their functions appear to be mechanistically linked.
Collapse
|
8
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
9
|
Fu FF, Dawe RK, Gent JI. Loss of RNA-Directed DNA Methylation in Maize Chromomethylase and DDM1-Type Nucleosome Remodeler Mutants. THE PLANT CELL 2018; 30:1617-1627. [PMID: 29884624 PMCID: PMC6096594 DOI: 10.1105/tpc.18.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 05/02/2023]
Abstract
Plants make use of distinct types of DNA methylation characterized by their DNA methyltransferases and modes of regulation. One type, RNA-directed DNA methylation (RdDM), is guided by small interfering RNAs (siRNAs) to the edges of transposons that are close to genes, areas called mCHH islands in maize (Zea mays). Another type, chromomethylation, is guided by histone H3 lysine 9 methylation to heterochromatin across the genome. We examined DNA methylation and small RNA expression in plant tissues that were mutant for both copies of the genes encoding chromomethylases as well as mutants for both copies of the genes encoding DECREASED DNA METHYLATION1 (DDM1)-type nucleosome remodelers, which facilitate chromomethylation. Both sets of double mutants were nonviable but produced embryos and endosperm. RdDM was severely compromised in the double mutant embryos, both in terms of DNA methylation and siRNAs. Loss of 24-nucleotide siRNA from mCHH islands was coupled with a gain of 21-, 22-, and 24-nucleotide siRNAs in heterochromatin. These results reveal a requirement for both chromomethylation and DDM1-type nucleosome remodeling for RdDM in mCHH islands, which we hypothesize is due to dilution of RdDM components across the genome when heterochromatin is compromised.
Collapse
Affiliation(s)
- Fang-Fang Fu
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
10
|
Anderson SN, Zynda GJ, Song J, Han Z, Vaughn MW, Li Q, Springer NM. Subtle Perturbations of the Maize Methylome Reveal Genes and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation Pathways. G3 (BETHESDA, MD.) 2018; 8:1921-1932. [PMID: 29618467 PMCID: PMC5982821 DOI: 10.1534/g3.118.200284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
Abstract
DNA methylation is a chromatin modification that can provide epigenetic regulation of gene and transposon expression. Plants utilize several pathways to establish and maintain DNA methylation in specific sequence contexts. The chromomethylase (CMT) genes maintain CHG (where H = A, C or T) methylation. The RNA-directed DNA methylation (RdDM) pathway is important for CHH methylation. Transcriptome analysis was performed in a collection of Zea mays lines carrying mutant alleles for CMT or RdDM-associated genes. While the majority of the transcriptome was not affected, we identified sets of genes and transposon families sensitive to context-specific decreases in DNA methylation in mutant lines. Many of the genes that are up-regulated in CMT mutant lines have high levels of CHG methylation, while genes that are differentially expressed in RdDM mutants are enriched for having nearby mCHH islands, implicating context-specific DNA methylation in the regulation of expression for a small number of genes. Many genes regulated by CMTs exhibit natural variation for DNA methylation and transcript abundance in a panel of diverse inbred lines. Transposon families with differential expression in the mutant genotypes show few defining features, though several families up-regulated in RdDM mutants show enriched expression in endosperm tissue, highlighting the potential importance for this pathway during reproduction. Taken together, our findings suggest that while the number of genes and transposon families whose expression is reproducibly affected by mild perturbations in context-specific methylation is small, there are distinct patterns for loci impacted by RdDM and CMT mutants.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Gregory J Zynda
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
11
|
Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat Genet 2018; 50:865-873. [PMID: 29736015 PMCID: PMC6317521 DOI: 10.1038/s41588-018-0115-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
DNA methylation is essential for gene regulation, transposon silencing,
and imprinting. Although the generation of specific DNA methylation patterns is
critical for these processes, how methylation is regulated at individual loci
remains unclear. Here we show that a family of four putative chromatin
remodeling factors, CLASSY (CLSY) 1–4, are required for both
locus-specific and global regulation of DNA methylation in
Arabidopsis. Mechanistically, these factors act in
connection with RNA polymerase-IV (Pol-IV) to control the production of
24-nucleotide small interfering RNAs (24nt-siRNAs), which guide DNA methylation.
Individually, the CLSYs regulate Pol-IV-chromatin association and 24nt-siRNA
production at thousands of distinct loci, and together, they regulate
essentially all 24nt-siRNAs. Depending on the CLSYs involved, this regulation
relies on different repressive chromatin modifications to facilitate
locus-specific control of DNA methylation. Given the conservation between
methylation systems in plants and mammals, analogous pathways likely operate in
a broad range of organisms.
Collapse
|
12
|
Wang PH, Wittmeyer KT, Lee TF, Meyers BC, Chopra S. Overlapping RdDM and non-RdDM mechanisms work together to maintain somatic repression of a paramutagenic epiallele of maize pericarp color1. PLoS One 2017; 12:e0187157. [PMID: 29112965 PMCID: PMC5675401 DOI: 10.1371/journal.pone.0187157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022] Open
Abstract
Allelic variation at the Zea mays (maize) pericarp color1 (p1) gene has been attributed to epigenetic gene regulation. A p1 distal enhancer, 5.2 kb upstream of the transcriptional start site, has demonstrated variation in DNA methylation in different p1 alleles/epialleles. In addition, DNA methylation of sequences within the 3’ end of intron 2 also plays a role in tissue-specific expression of p1 alleles. We show here a direct evidence for small RNAs’ involvement in regulating p1 that has not been demonstrated previously. The role of mediator of paramutation1 (mop1) was tested in the maintenance of somatic silencing at distinct p1 alleles: the non-paramutagenic P1-wr allele and paramutagenic P1-rr’ epiallele. The mop1-1 mutation gradually relieves the silenced phenotype after multiple generations of exposure; P1-wr;mop1-1 plants display a loss of 24-nt small RNAs and DNA methylation in the 3’ end of the intron 2, a region close to a Stowaway transposon. In addition, a MULE sequence within the proximal promoter of P1-wr shows depletion of 24nt siRNAs in mop1-1 plants. Release of silencing was not correlated with small RNAs at the distal enhancer region of the P1-wr allele. We found that the somatic silencing of the paramutagenic P1-rr’ is correlated with significantly reduced H3K9me2 in the distal enhancer of P1-rr’; mop1-1 plants, while symmetric DNA methylation is not significantly different. This study highlights that the epigenetic regulation of p1 alleles is controlled both via RdDM as well as non-RdDM mechanisms.
Collapse
Affiliation(s)
- Po-Hao Wang
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kameron T. Wittmeyer
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tzuu-fen Lee
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Blake C. Meyers
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Surinder Chopra
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Stroud LK, McGinnis KM. Altered nucleosome positions in maize haplotypes and mutants of a subset of SWI/SNF-like proteins. PLANT DIRECT 2017; 1:e00019. [PMID: 31245667 PMCID: PMC6508530 DOI: 10.1002/pld3.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 06/09/2023]
Abstract
Chromatin remodelers alter DNA-histone interactions in eukaryotic organisms and have been well characterized in yeast and Arabidopsis. While there are maize proteins with similar domains as known remodelers, the ability of the maize proteins to alter nucleosome position has not been reported. Mutant alleles of several maize proteins (RMR1, CHR101, CHR106, CHR127, and CHR156) with similar functional domains to known chromatin remodelers were identified. Altered gene expression of Chr101, Chr106, Chr127, and Chr156 was demonstrated in plants homozygous for the mutant alleles. These mutant genotypes were subjected to nucleosome position analysis to determine whether misregulation of putative maize chromatin proteins would lead to altered DNA-histone interactions. Nucleosome position changes were observed in plants homozygous for chr101, chr106, chr127, and chr156 mutant alleles, suggesting that CHR101, CHR106, CHR127, and CHR156 may affect chromatin structure. The role of RNA polymerases in altering DNA-histone interactions was also tested. Changes in nucleosome position were demonstrated in homozygous mop2-1 individuals. These changes were demonstrated at the b1 tandem repeats and at newly identified loci. Additionally, differential DNA-histone interactions and altered gene expression of putative chromatin remodelers were demonstrated between different maize haplotypes.
Collapse
Affiliation(s)
- Linda K. Stroud
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Karen M. McGinnis
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
14
|
The Pea (Pisum sativum L.) Rogue Paramutation is Accompanied by Alterations in the Methylation Pattern of Specific Genomic Sequences. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The spontaneous emergence among common pea (Pisum sativum L.) cultivars of off-type rogue plants exhibiting leaves with narrower and pointed leaflets and stipules and the non-Mendelian inheritance of this new phenotype were first described in the early 20th century. However, so far, no studies at the molecular level of this first identified case of paramutation have been carried out. In this study, we show for the first time that the pea rogue paramutation is accompanied by alterations in the methylation status of specific genomic sequences. Although, no significant differences were observed in the genome-wide DNA methylation in leaves of non-rogue cv. Onward in comparison to its rogue paramutant line JI2723, 22 DNA sequences were identified by methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) analysis as differentially methylated in the two epigenomes. Mitotically inherited through all leaf tissues, the differential methylation patterns were also found to be meiotically inherited and conserved in pollen grains for 12 out of the 22 sequences. Fourteen of the sequences were successfully amplified in cDNA but none of them exhibited significant differential expression in the two contrasting epigenotypes. The further exploitation of the present research results on the way towards the elucidation of the molecular mechanisms behind this interesting epigenetic phenomenon is discussed.
Collapse
|
15
|
Epigenetic Control of Gene Expression in Maize. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 328:25-48. [DOI: 10.1016/bs.ircmb.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
|
17
|
Chen W, Zhu Q, Liu Y, Zhang Q. Chromatin Remodeling and Plant Immunity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 106:243-260. [PMID: 28057214 DOI: 10.1016/bs.apcsb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?
Collapse
Affiliation(s)
- W Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Q Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Y Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Q Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
18
|
Egger RL, Walbot V. A framework for evaluating developmental defects at the cellular level: An example from ten maize anther mutants using morphological and molecular data. Dev Biol 2016; 419:26-40. [PMID: 26992364 DOI: 10.1016/j.ydbio.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
In seed plants, anthers are critical for sexual reproduction, because they foster both meiosis and subsequent pollen development of male germinal cells. Male-sterile mutants are analyzed to define steps in anther development. Historically the major topics in these studies are meiotic arrest and post-meiotic gametophyte failure, while relatively few studies focus on pre-meiotic defects of anther somatic cells. Utilizing morphometric analysis we demonstrate that pre-meiotic mutants can be impaired in anticlinal or periclinal cell division patterns and that final cell number in the pre-meiotic anther lobe is independent of cell number changes of individual differentiated somatic cell types. Data derived from microarrays and from cell wall NMR analyses allow us to further refine our understanding of the onset of phenotypes. Collectively the data highlight that even minor deviations from the correct spatiotemporal pattern of somatic cell proliferation can result in male sterility in Zea mays.
Collapse
Affiliation(s)
- Rachel L Egger
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States.
| | - Virginia Walbot
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States
| |
Collapse
|
19
|
Gabriel JM, Hollick JB. Paramutation in maize and related behaviors in metazoans. Semin Cell Dev Biol 2015; 44:11-21. [PMID: 26318741 DOI: 10.1016/j.semcdb.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
Paramutation refers to both the process and results of trans-homolog interactions causing heritable changes in both gene regulation and silencing abilities. Originally described in plants, paramutation-like behaviors have now been reported in model metazoans. Here we detail our current understanding of the paramutation mechanism as defined in Zea mays and compare this paradigm to these metazoan examples. Experimental results implicate functional roles of small RNAs in all these model organisms that highlight a diversity of mechanisms by which these molecules specify meiotically heritable regulatory information in the eukarya.
Collapse
Affiliation(s)
- Janelle M Gabriel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Jay B Hollick
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Pilu R. Paramutation phenomena in plants. Semin Cell Dev Biol 2015; 44:2-10. [DOI: 10.1016/j.semcdb.2015.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
|
21
|
Giacopelli BJ, Hollick JB. Trans-Homolog Interactions Facilitating Paramutation in Maize. PLANT PHYSIOLOGY 2015; 168:1226-36. [PMID: 26149572 PMCID: PMC4528761 DOI: 10.1104/pp.15.00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/03/2015] [Indexed: 05/13/2023]
Abstract
Paramutations represent locus-specific trans-homolog interactions affecting the heritable silencing properties of endogenous alleles. Although examples of paramutation are well studied in maize (Zea mays), the responsible mechanisms remain unclear. Genetic analyses indicate roles for plant-specific DNA-dependent RNA polymerases that generate small RNAs, and current working models hypothesize that these small RNAs direct heritable changes at sequences often acting as transcriptional enhancers. Several studies have defined specific sequences that mediate paramutation behaviors, and recent results identify a diversity of DNA-dependent RNA polymerase complexes operating in maize. Other reports ascribe broader roles for some of these complexes in normal genome function. This review highlights recent research to understand the molecular mechanisms of paramutation and examines evidence relevant to small RNA-based modes of transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Brian John Giacopelli
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jay Brian Hollick
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
22
|
Zheng Z, Yu H, Miki D, Jin D, Zhang Q, Ren Z, Gong Z, Zhang H, Zhu JK. Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis. Cell Rep 2015; 11:1160-7. [PMID: 25981044 PMCID: PMC4484736 DOI: 10.1016/j.celrep.2015.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/12/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022] Open
Abstract
Paramutation is an epigenetic phenomenon that has been observed in a number of multicellular organisms. The epigenetically silenced state of paramutated alleles is not only meiotically stable but also "infectious" to active homologous alleles. The molecular mechanism of paramutation remains unclear, but components involved in RNA-directed DNA methylation (RdDM) are required. Here, we report a multi-copy pRD29A-LUC transgene in Arabidopsis thaliana that behaves like a paramutation locus. The silent state of LUC is induced by mutations in the DNA glycosylase gene ROS1. The silent alleles of LUC are not only meiotically stable but also able to transform active LUC alleles into silent ones, in the absence of ros1 mutations. Maintaining silencing at the LUC gene requires action of multiple pathways besides RdDM. Our study identified specific factors that are involved in the paramutation-like phenomenon and established a model system for the study of paramutation in Arabidopsis.
Collapse
Affiliation(s)
- Zhimin Zheng
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China.
| | - Hasi Yu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China
| | - Dan Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingzhu Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 210602, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 2015; 199:1107-25. [PMID: 25653306 DOI: 10.1534/genetics.115.174714] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.
Collapse
|
24
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
25
|
Diverse gene-silencing mechanisms with distinct requirements for RNA polymerase subunits in Zea mays. Genetics 2014; 198:1031-42. [PMID: 25164883 DOI: 10.1534/genetics.114.168518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants. This finding suggests that transgene-derived small interfering RNAs (siRNAs) circumvented the requirement for MOP1, a predicted RNA-dependent RNA polymerase, and MOP3, the predicted largest subunit of RNA polymerase IV (Pol IV). Because the Arabidopsis protein orthologous to MOP2 is the second largest subunit of Pol IV and V, our results may indicate that hairpin-induced siRNAs cannot bypass the requirement for the predicted scaffolding activity of Pol V. In contrast to a1pIR, the b1IR transgene silenced endogenous B1 in all three homozygous mutant genotypes--mop1-1, Mop2-1, and mop3-1--suggesting that transgene mediated b1 silencing did not involve MOP2-containing Pol V complexes. Based on the combined results for a1, b1, and three previously described loci, we propose a speculative hypothesis of locus-specific deployment of Pol II, MOP2-containing Pol V, or alternative versions of Pol V with second largest subunits other than MOP2 to explain the mechanistic differences in silencing at specific loci, including one example associated with paramutation.
Collapse
|
26
|
Madzima TF, Huang J, McGinnis KM. Chromatin structure and gene expression changes associated with loss of MOP1 activity in Zea mays. Epigenetics 2014; 9:1047-59. [PMID: 24786611 PMCID: PMC4143406 DOI: 10.4161/epi.29022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Though the mechanisms governing nuclear organization are not well understood, it is apparent that epigenetic modifications coordinately modulate chromatin organization as well as transcription. In maize, MEDIATOR OF PARAMUTATION1 (MOP1) is required for 24 nt siRNA-mediated epigenetic regulation and transcriptional gene silencing via a putative Pol IV- RdDM pathway. To elucidate the mechanisms of nuclear chromatin organization, we investigated the relationship between chromatin structure and transcription in response to loss of MOP1 function. We used a microarray based micrococcal nuclease sensitivity assay to identify genome-wide changes in chromatin structure in mop1-1 immature ears and observed an increase in chromatin accessibility at chromosome arms associated with loss of MOP1 function. Within the many genes misregulated in mop1 mutants, we identified one subset likely to be direct targets of epigenetic transcriptional silencing via Pol-IV RdDM. We found that target specificity for MOP1-mediated RdDM activity is governed by multiple signals that include accumulation of 24 nt siRNAs and the presence of specific classes of gene-proximal transposons, but neither of these attributes alone is sufficient to predict transcriptional misregulation in mop1-1 homozygous mutants. Our results suggest a role for MOP1 in regulation of higher-order chromatin organization where loss of MOP1 activity at a subset of loci triggers a broader cascade of transcriptional consequences and genome-wide changes in chromatin structure.
Collapse
Affiliation(s)
- Thelma F Madzima
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| | - Ji Huang
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| | - Karen M McGinnis
- Department of Biological Science; Florida State University; Tallahassee, FL USA
| |
Collapse
|
27
|
Bargsten JW, Folta A, Mlynárová L, Nap JP. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome. PLoS One 2013; 8:e81147. [PMID: 24312269 PMCID: PMC3842944 DOI: 10.1371/journal.pone.0081147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/18/2013] [Indexed: 12/22/2022] Open
Abstract
As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.
Collapse
Affiliation(s)
- Joachim W. Bargsten
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
- Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
- Laboratory for Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Adam Folta
- Laboratory for Molecular Biology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ludmila Mlynárová
- Laboratory for Molecular Biology, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics 2012 (CBSG2012), Wageningen, The Netherlands
| | - Jan-Peter Nap
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
- Centre for BioSystems Genomics 2012 (CBSG2012), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Regulski M, Lu Z, Kendall J, Donoghue MTA, Reinders J, Llaca V, Deschamps S, Smith A, Levy D, McCombie WR, Tingey S, Rafalski A, Hicks J, Ware D, Martienssen RA. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 2013; 23:1651-62. [PMID: 23739895 PMCID: PMC3787262 DOI: 10.1101/gr.153510.112] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The maize genome, with its large complement of transposons and repeats, is a paradigm for the study of epigenetic mechanisms such as paramutation and imprinting. Here, we present the genome-wide map of cytosine methylation for two maize inbred lines, B73 and Mo17. CG (65%) and CHG (50%) methylation (where H = A, C, or T) is highest in transposons, while CHH (5%) methylation is likely guided by 24-nt, but not 21-nt, small interfering RNAs (siRNAs). Correlations with methylation patterns suggest that CG methylation in exons (8%) may deter insertion of Mutator transposon insertion, while CHG methylation at splice acceptor sites may inhibit RNA splicing. Using the methylation map as a guide, we used low-coverage sequencing to show that parental methylation differences are inherited by recombinant inbred lines. However, frequent methylation switches, guided by siRNA, persist for up to eight generations, suggesting that epigenetic inheritance resembling paramutation is much more common than previously supposed. The methylation map will provide an invaluable resource for epigenetic studies in maize.
Collapse
Affiliation(s)
- Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res 2013. [PMID: 23269663 DOI: 10.1101/gr.146985.112.as] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small RNA-mediated regulation of chromatin structure is an important means of suppressing unwanted genetic activity in diverse plants, fungi, and animals. In plants specifically, 24-nt siRNAs direct de novo methylation to repetitive DNA, both foreign and endogenous, in a process known as RNA-directed DNA methylation (RdDM). Many components of the de novo methylation machinery have been identified recently, including multiple RNA polymerases, but specific genetic features that trigger methylation remain poorly understood. By applying whole-genome bisulfite sequencing to maize, we found that transposons close to cellular genes (particularly within 1 kb of either a gene start or end) are strongly associated with de novo methylation, as evidenced both by 24-nt siRNAs and by methylation specifically in the CHH sequence context. In addition, we found that the major classes of transposons exhibited a gradient of CHH methylation determined by proximity to genes. Our results further indicate that intergenic chromatin in maize exists in two major forms that are distinguished based on proximity to genes-one form marked by dense CG and CHG methylation and lack of transcription, and one marked by CHH methylation and activity of multiple forms of RNA polymerase. The existence of the latter, which we call CHH islands, may have implications for how cellular gene expression could be coordinated with immediately adjacent transposon repression in a large genome with a complex organization of genes interspersed in a landscape of transposons.
Collapse
Affiliation(s)
- Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res 2013; 23:628-37. [PMID: 23269663 PMCID: PMC3613580 DOI: 10.1101/gr.146985.112] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022]
Abstract
Small RNA-mediated regulation of chromatin structure is an important means of suppressing unwanted genetic activity in diverse plants, fungi, and animals. In plants specifically, 24-nt siRNAs direct de novo methylation to repetitive DNA, both foreign and endogenous, in a process known as RNA-directed DNA methylation (RdDM). Many components of the de novo methylation machinery have been identified recently, including multiple RNA polymerases, but specific genetic features that trigger methylation remain poorly understood. By applying whole-genome bisulfite sequencing to maize, we found that transposons close to cellular genes (particularly within 1 kb of either a gene start or end) are strongly associated with de novo methylation, as evidenced both by 24-nt siRNAs and by methylation specifically in the CHH sequence context. In addition, we found that the major classes of transposons exhibited a gradient of CHH methylation determined by proximity to genes. Our results further indicate that intergenic chromatin in maize exists in two major forms that are distinguished based on proximity to genes-one form marked by dense CG and CHG methylation and lack of transcription, and one marked by CHH methylation and activity of multiple forms of RNA polymerase. The existence of the latter, which we call CHH islands, may have implications for how cellular gene expression could be coordinated with immediately adjacent transposon repression in a large genome with a complex organization of genes interspersed in a landscape of transposons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - R. Kelly Dawe
- Department of Plant Biology
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
31
|
Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013; 14:100-12. [PMID: 23329111 DOI: 10.1038/nrg3355] [Citation(s) in RCA: 694] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability.
Collapse
Affiliation(s)
- Stephane E Castel
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
32
|
Erhard KF, Parkinson SE, Gross SM, Barbour JER, Lim JP, Hollick JB. Maize RNA polymerase IV defines trans-generational epigenetic variation. THE PLANT CELL 2013; 25:808-19. [PMID: 23512852 PMCID: PMC3634690 DOI: 10.1105/tpc.112.107680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays) RNA Polymerase IV (Pol IV) largest subunit, RNA Polymerase D1 (RPD1 or NRPD1), is required for facilitating paramutations, restricting expression patterns of genes required for normal development, and generating small interfering RNA (siRNAs). Despite this expanded role for maize Pol IV relative to Arabidopsis thaliana, neither the general characteristics of Pol IV-regulated haplotypes, nor their prevalence, are known. Here, we show that specific haplotypes of the purple plant1 locus, encoding an anthocyanin pigment regulator, acquire and retain an expanded expression domain following transmission from siRNA biogenesis mutants. This conditioned expression pattern is progressively enhanced over generations in Pol IV mutants and then remains heritable after restoration of Pol IV function. This unusual genetic behavior is associated with promoter-proximal transposon fragments but is independent of sequences required for paramutation. These results indicate that trans-generational Pol IV action defines the expression patterns of haplotypes using co-opted transposon-derived sequences as regulatory elements. Our results provide a molecular framework for the concept that induced changes to the heterochromatic component of the genome are coincident with heritable changes in gene regulation. Alterations of this Pol IV-based regulatory system can generate potentially desirable and adaptive traits for selection to act upon.
Collapse
Affiliation(s)
- Karl F. Erhard
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Susan E. Parkinson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Stephen M. Gross
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Joy-El R. Barbour
- Department of Molecular Cell Biology, University of California, Berkeley, California 94720-3200
| | - Jana P. Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Jay B. Hollick
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Address correspondence to
| |
Collapse
|
33
|
Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3-GENES GENOMES GENETICS 2013; 3:231-49. [PMID: 23390600 PMCID: PMC3564984 DOI: 10.1534/g3.112.004465] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023]
Abstract
Proper regulation of anther differentiation is crucial for producing functional pollen, and defects in or absence of any anther cell type result in male sterility. To deepen understanding of processes required to establish premeiotic cell fate and differentiation of somatic support cell layers a cytological screen of maize male-sterile mutants has been conducted which yielded 42 new mutants including 22 mutants with premeiotic cytological defects (increasing this class fivefold), 7 mutants with postmeiotic defects, and 13 mutants with irregular meiosis. Allelism tests with known and new mutants confirmed new alleles of four premeiotic developmental mutants, including two novel alleles of msca1 and single new alleles of ms32, ms8, and ocl4, and two alleles of the postmeiotic ms45. An allelic pair of newly described mutants was found. Premeiotic mutants are now classified into four categories: anther identity defects, abnormal anther structure, locular wall defects and premature degradation of cell layers, and/or microsporocyte collapse. The range of mutant phenotypic classes is discussed in comparison with developmental genetic investigation of anther development in rice and Arabidopsis to highlight similarities and differences between grasses and eudicots and within the grasses.
Collapse
|
34
|
Goettel W, Messing J. Paramutagenicity of a p1 epiallele in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:159-77. [PMID: 22986680 DOI: 10.1007/s00122-012-1970-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/16/2012] [Indexed: 05/09/2023]
Abstract
Complex silencing mechanisms in plants and other kingdoms target transposons, repeat sequences, invasive viral nucleic acids and transgenes, but also endogenous genes and genes involved in paramutation. Paramutation occurs in a heterozygote when a transcriptionally active allele heritably adopts the epigenetic state of a transcriptionally and/or post-transcriptionally repressed allele. P1-rr and its silenced epiallele P1-pr, which encode a Myb-like transcription factor mediating pigmentation in floral organs of Zea mays, differ in their cytosine methylation pattern and chromatin structure at a complex enhancer site. Here, we tested whether P1-pr is able to heritably silence its transcriptionally active P1-rr allele in a heterozygote and whether DNA methylation is associated with the establishment and maintenance of P1-rr silencing. We found that P1-pr participates in paramutation as the repressing allele and P1-rr as the sensitive allele. Silencing of P1-rr is highly variable compared to the inducing P1-pr resulting in a wide range of gene expression. Whereas cytosine methylation at P1-rr is negatively correlated with transcription and pigment levels after segregation of P1-pr, methylation lags behind the establishment of the repressed p1 gene expression. We propose a model in which P1-pr paramutation is triggered by changing epigenetic states of transposons immediately adjacent to a P1-rr enhancer sequence. Considering the vast amount of transposable elements in the maize genome close to regulatory elements of genes, numerous loci could undergo paramutation-induced allele silencing, which could also have a significant impact on breeding agronomically important traits.
Collapse
Affiliation(s)
- Wolfgang Goettel
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|
35
|
Weber N, Halpin C, Hannah LC, Jez JM, Kough J, Parrott W. Editor's choice: Crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks. PLANT PHYSIOLOGY 2012; 160:1842-53. [PMID: 23060369 PMCID: PMC3510115 DOI: 10.1104/pp.112.204271] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/02/2012] [Indexed: 05/22/2023]
Affiliation(s)
- Natalie Weber
- Pioneer Hi-Bred International, Wilmington, Delaware 19880, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hollick JB. Paramutation: a trans-homolog interaction affecting heritable gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:536-543. [PMID: 23017240 DOI: 10.1016/j.pbi.2012.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Paramutation describes both the process and results of trans-sensing between chromosomes that causes specific heritable changes in gene regulation. RNA molecules are implicated in mediating similar events in maize, mouse, and Drosophila. Changes in both small RNA profiles and cytosine methylation patterns in Arabidopsis hybrids represent a potential molecular equivalent to the interactions responsible for paramutations. Despite a seemingly unifying feature of RNA-directed changes, both recent and historical works show that paramutations in maize require plant-specific proteins and lack expected hallmarks of a trans-effect mediated solely by RNAs. Recent examples of nearby transposons affecting RNA polymerase II functions lead to an opinion that paramutations represent an emergent property of the transcriptional dynamics ongoing in plant genomes between repetitious features and nearby genes.
Collapse
Affiliation(s)
- Jay B Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Brzeski J, Brzeska K. The maze of paramutation: a rough guide to the puzzling epigenetics of paramutation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:863-74. [PMID: 21976288 DOI: 10.1002/wrna.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic mechanisms maintain gene expression states through mitotic and sometimes meiotic cell divisions. Paramutation is an extreme example of epigenetic processes. Not only an established expression state is transmitted through meiosis to the following generations but also an information transfer occurs between alleles and leads to heritable changes in expression state. As a consequence the expression states can rapidly propagate in population, violating Mendelian genetics. Recent findings unraveled an essential role for siRNA-dependent processes in paramutation. Despite significant progress, the overall picture is still puzzling and many important questions remain to be answered.
Collapse
Affiliation(s)
- Jan Brzeski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
38
|
Pilu R. Paramutation: just a curiosity or fine tuning of gene expression in the next generation? Curr Genomics 2011; 12:298-306. [PMID: 22131875 PMCID: PMC3131737 DOI: 10.2174/138920211795860099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 12/31/2022] Open
Abstract
Gene silencing is associated with heritable changes in gene expression which occur without changes in DNA sequence. In eukaryotes these phenomena are common and control important processes, such as development, imprinting, viral and transposon sequence silencing, as well as transgene silencing. Among the epigenetic events, paramutation occurs when a silenced allele (named paramutagenic) is able to silence another allele (paramutable) in trans and this change is heritable. The silenced paramutable allele acquires paramutagenic capacity in the next generations. In the 1950s, Alexander Brink described for the first time the phenomenon of paramutation, occurring in maize at the colored1 (r1) gene, a complex locus (encoding myc-homologous transcription factors) that regulates the anthocyanin biosynthetic pathway. Since then, paramutation and paramutation-like interactions have been discovered in other plants and animals, suggesting that they may underlie important mechanisms for gene expression. The molecular bases of these phenomena are unknown. However in some cases, the event of paramutation has been correlated with changes in DNA methylation, chromatin structure and recently several studies suggest that RNA could play a fundamental role. This last consideration is greatly supported by genetic screening for mutants inhibiting paramutation, which allowed the identification of genes involved in RNA-directed transcriptional silencing, although it is possible that proteins are also required for paramutation.The meaning of paramutation in the life cycle and in evolution remains to be determined even though we might conjecture that this phenomenon could be involved in a fast heritability of favourable epigenetic states across generations in a non-Mendelian way.
Collapse
Affiliation(s)
- Roberto Pilu
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
39
|
Identification of epigenetic regulators of a transcriptionally silenced transgene in maize. G3-GENES GENOMES GENETICS 2011; 1:75-83. [PMID: 22384320 PMCID: PMC3276119 DOI: 10.1534/g3.111.000232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/17/2011] [Indexed: 01/12/2023]
Abstract
Transcriptional gene silencing is a gene regulatory mechanism essential to all organisms. Many transcriptional regulatory mechanisms are associated with epigenetic modifications such as changes in chromatin structure, acetylation and methylation of core histone proteins, and DNA methylation within regulatory regions of endogenous genes and transgenes. Although several maize mutants have been identified from prior forward genetic screens for epigenetic transcriptional silencing, these screens have been far from saturated. Herein, the transcriptionally silent b1 genomic transgene (BTG-silent), a stable, epigenetically silenced transgene in Zea mays (maize), is demonstrated to be an effective phenotype for a forward genetic screen. When the transgene is reactivated, a dark purple plant phenotype is evident because the B1 transcription factor activates anthocyanin biosynthesis, making loss of silencing mutants easy to identify. Using BTG-silent, ten new putative mutants were identified and named transgene reactivated1 through 11 (tgr1-6 and tgr8-11). Three of these mutants have been examined in more detail, and molecular and genetic assays demonstrated that these mutants have both distinct and overlapping phenotypes with previously identified maize mutants that relieve epigenetic transcriptional silencing. Linkage analysis suggests that tgr2 and tgr3 do not correspond to a mutation at previously identified maize loci resulting from other forward genetic screens, while tgr1 shows linkage to a characterized gene. These results suggest that the mutants are a valuable resource for future studies because some of the mutants are likely to reveal genes that encode products required for epigenetic gene regulation in maize but are not currently represented by sequenced mutations.
Collapse
|
40
|
Simon SA, Meyers BC. Small RNA-mediated epigenetic modifications in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:148-55. [PMID: 21159545 DOI: 10.1016/j.pbi.2010.11.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 05/21/2023]
Abstract
Epigenetic modifications in plants can be directed and mediated by small RNAs (sRNAs). This regulation is composed of a highly interactive network of sRNA-directed DNA methylation, histone, and chromatin modifications, all of which control transcription. Identification and functional characterization of components of the siRNA-directed DNA methylation pathway have provided insights into epigenetic pathways that form heterochromatin and into chromatin-based pathways for gene silencing, paramutation, genetic imprinting, and epigenetic reprogramming. Next-generation sequencing technologies have facilitated new discoveries and have helped create a basic blueprint of the plant epigenome. As the multiple layers of epigenetic regulation in plants are dissected, a more comprehensive understanding of the biological importance of epigenetic marks and states has been developed.
Collapse
Affiliation(s)
- Stacey A Simon
- Department of Plant and Soil Sciences & Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
41
|
Erhard KF, Hollick JB. Paramutation: a process for acquiring trans-generational regulatory states. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:210-216. [PMID: 21420347 DOI: 10.1016/j.pbi.2011.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/14/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
Basic tenets of Mendelian inheritance are violated by paramutations in which trans-homolog interactions lead to heritable changes in gene regulation and phenotype. First described in plants, similar behaviors have now been noted in diverse eukaryotes. Genetic and molecular studies of paramutations occurring in maize indicate that components of a small interfering RNA (siRNA) biogenesis pathway are required for the maintenance of meiotically heritable regulatory states. Although these findings lead to a hypothesis that siRNAs themselves mediate paramutation interactions, an assessment of existing data supports the opinion that siRNAs alone are insufficient. Recent evidence implies that transcription of paramutation-associated repeats and siRNA-facilitated chromatin changes at affected loci are involved in directing and maintaining the heritable changes in gene regulation that typify paramutations.
Collapse
Affiliation(s)
- Karl F Erhard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
42
|
Abstract
Paramutation describes a heritable change of gene expression that is brought about through interactions between homologous chromosomes. Genetic analyses in plants and, more recently, in mouse indicate that genomic sequences related to transcriptional control and molecules related to small RNA biology are necessary for specific examples of paramutation. Some of the molecules identified in maize are also required for normal plant development. These observations indicate a functional relationship between the nuclear mechanisms responsible for paramutation and modes of developmental gene control.
Collapse
Affiliation(s)
- Jay B Hollick
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| |
Collapse
|
43
|
Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature 2010; 466:983-6. [PMID: 20725042 DOI: 10.1038/nature09308] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 06/24/2010] [Indexed: 11/09/2022]
Abstract
A diploid organism has two copies of each gene, one inherited from each parent. The expression of two inherited alleles is sometimes biased by the effects known as dominant/recessive relationships, which determine the final phenotype of the organism. To explore the mechanisms underlying these relationships, we have examined the monoallelic expression of S-locus protein 11 genes (SP11), which encode the male determinants of self-incompatibility in Brassica. We previously reported that SP11 expression was monoallelic in some S heterozygotes, and that the promoter regions of recessive SP11 alleles were specifically methylated in the anther tapetum. Here we show that this methylation is controlled by trans-acting small non-coding RNA (sRNA). We identified inverted genomic sequences that were similar to the recessive SP11 promoters in the flanking regions of dominant SP11 alleles. These sequences were specifically expressed in the anther tapetum and processed into 24-nucleotide sRNA, named SP11 methylation inducer (Smi). Introduction of the Smi genomic region into the recessive S homozygotes triggered the methylation of the promoter of recessive SP11 alleles and repressed their transcription. This is an example showing sRNA encoded in the flanking region of a dominant allele acts in trans to induce transcriptional silencing of the recessive allele. Our finding may provide new insights into the widespread monoallelic gene expression systems.
Collapse
|
44
|
van Wolfswinkel JC, Ketting RF. The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci 2010; 123:1825-39. [PMID: 20484663 DOI: 10.1242/jcs.061713] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small non-coding RNAs make up much of the RNA content of a cell and have the potential to regulate gene expression on many different levels. Initial discoveries in the 1990s and early 21st century focused on determining mechanisms of post-transcriptional regulation mediated by small-interfering RNAs (siRNAs) and microRNAs (miRNAs). More recent research, however, has identified new classes of RNAs and new regulatory mechanisms, expanding the known regulatory potential of small non-coding RNAs to encompass chromatin regulation. In this Commentary, we provide an overview of these chromatin-related mechanisms and speculate on the extent to which they are conserved among eukaryotes.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
45
|
Haring M, Bader R, Louwers M, Schwabe A, van Driel R, Stam M. The role of DNA methylation, nucleosome occupancy and histone modifications in paramutation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:366-78. [PMID: 20444233 DOI: 10.1111/j.1365-313x.2010.04245.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Paramutation is the transfer of epigenetic information between alleles that leads to a heritable change in expression of one of these alleles. Paramutation at the tissue-specifically expressed maize (Zea mays) b1 locus involves the low-expressing B' and high-expressing B-I allele. Combined in the same nucleus, B' heritably changes B-I into B'. A hepta-repeat located 100-kb upstream of the b1 coding region is required for paramutation and for high b1 expression. The role of epigenetic modifications in paramutation is currently not well understood. In this study, we show that the B' hepta-repeat is DNA-hypermethylated in all tissues analyzed. Importantly, combining B' and B-I in one nucleus results in de novo methylation of the B-I repeats early in plant development. These findings indicate a role for hepta-repeat DNA methylation in the establishment and maintenance of the silenced B' state. In contrast, nucleosome occupancy, H3 acetylation, and H3K9 and H3K27 methylation are mainly involved in tissue-specific regulation of the hepta-repeat. Nucleosome depletion and H3 acetylation are tissue-specifically regulated at the B-I hepta-repeat and associated with enhancement of b1 expression. H3K9 and H3K27 methylation are tissue-specifically localized at the B' hepta-repeat and reinforce the silenced B' chromatin state. The B' coding region is H3K27 dimethylated in all tissues analyzed, indicating a role in the maintenance of the silenced B' state. Taken together, these findings provide insight into the mechanisms underlying paramutation and tissue-specific regulation of b1 at the level of chromatin structure.
Collapse
Affiliation(s)
- Max Haring
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, the NetherlandsNetherlands Institute for Systems Biology (NISB), Centre for Mathematics and Computer Science (CWI), Science Park 123, 1098 XG Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Mahfouz MM. RNA-directed DNA methylation: mechanisms and functions. PLANT SIGNALING & BEHAVIOR 2010; 5:806-16. [PMID: 20421728 PMCID: PMC3115029 DOI: 10.4161/psb.5.7.11695] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 05/21/2023]
Abstract
Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response to disease states, growth, developmental and stress signals. RdDM machinery is composed of proteins that produce and modify 24-nt- long siRNAs, recruit the RdDM complex to genomic targets, methylate DNA and remodel chromatin. The final DNA methylation pattern is determined by either DNA methyltransferase alone or by the combined action of DNA methyltransferases and demethylases. The dynamic interaction between RdDM and demethylases may render the plant epigenome plastic to growth, developmental, and environmental cues. The epigenome plasticity may allow the plant genome to assume many epigenomes and to have the right epigenome at the right time in response to intracellular or extracellular stimuli. This review discusses recent advances in RdDM research and considers future perspectives.
Collapse
Affiliation(s)
- Magdy M Mahfouz
- Center for Plant Stress Genomics & Technology, 4700 King Abdullah University of Science & Technology, Kingdom of Saudi Arabia.
| |
Collapse
|
47
|
Arteaga-Vazquez MA, Chandler VL. Paramutation in maize: RNA mediated trans-generational gene silencing. Curr Opin Genet Dev 2010; 20:156-63. [PMID: 20153628 PMCID: PMC2859986 DOI: 10.1016/j.gde.2010.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/18/2010] [Accepted: 01/22/2010] [Indexed: 11/29/2022]
Abstract
Paramutation involves trans-interactions between alleles or homologous sequences that establish distinct gene expression states that are heritable for generations. It was first described in maize by Alexander Brink in the 1950s, with his studies of the red1 (r1) locus. Since that time, paramutation-like phenomena have been reported in other maize genes, other plants, fungi, and animals. Paramutation can occur between endogenous genes, two transgenes or an endogenous gene, and transgene. Recent results indicate that paramutation involves RNA-mediated heritable chromatin changes and a number of genes implicated in RNAi pathways. However, not all aspects of paramutation can be explained by known mechanisms of RNAi-mediated transcriptional silencing.
Collapse
Affiliation(s)
| | - Vicki Lynn Chandler
- BIO5 Institute, University of Arizona, 1657 E. Helen Street, Tucson, AZ 85721 Emails: ,
| |
Collapse
|
48
|
Transgenic expression of CBBP, a CXC domain protein, establishes paramutation in maize. Proc Natl Acad Sci U S A 2010; 107:5516-21. [PMID: 20212123 DOI: 10.1073/pnas.1001576107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paramutation is the ability of specific DNA sequences to communicate in trans to establish meiotically heritable expression states. Paramutation at the maize b1 locus is mediated by seven unique noncoding transcribed tandem repeats of 853 bp that are required to establish and maintain the meiotically heritable expression and distinct chromatin states associated with b1 paramutation. In this study, we report the identification of a CXC-domain protein CBBP (CXC domain b1-repeat binding protein) that binds to a defined region within the b1 tandem repeat sequence in vivo and in vitro. When CBBP is expressed from a transgene in maize, it can induce a silent state at the b1 locus that is heritable in progeny no longer containing the transgene, and the silent epiallele is capable of silencing an active epiallele, characteristic of paramutation. Accumulation of the CBBP protein correlates with b1 silencing in transgenic and nontransgenic plants. The ability of CBBP to form multimers and to bind to the b1 tandem repeats suggests a model for counting the number of b1 repeats. In contrast to previously identified proteins involved in paramutation, CBBP does not share similarity to the known components of the Arabidopsis RNAi heterochromatin silencing pathway. Thus, this study defines another class of protein that is involved in heritable gene silencing.
Collapse
|
49
|
Suter CM, Martin DIK. Paramutation: the tip of an epigenetic iceberg? Trends Genet 2010; 26:9-14. [PMID: 19945764 PMCID: PMC3137459 DOI: 10.1016/j.tig.2009.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
Paramutation describes the transfer of an acquired epigenetic state to an unlinked homologous locus, resulting in a meiotically heritable alteration in gene expression. Early investigations of paramutation characterized a mode of change and inheritance distinct from mendelian genetics, catalyzing the concept of the epigenome. Numerous examples of paramutation and paramutation-like phenomena have now emerged, with evidence that implicates small RNAs in the transfer and maintenance of epigenetic states. In animals Piwi-interacting RNA (piRNA)-mediated retrotransposon suppression seems to drive a vast system of epigenetic inheritance with paramutation-like characteristics. The classic examples of paramutation might be merely informative aberrations of pervasive and broadly conserved mechanisms that use RNA to sense homology and target epigenetic modification. When viewed in this context, paramutation is only one aspect of a common and broadly distributed form of inheritance based on epigenetic states.
Collapse
Affiliation(s)
- Catherine M Suter
- Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
50
|
Jia Y, Lisch DR, Ohtsu K, Scanlon MJ, Nettleton D, Schnable PS. Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLoS Genet 2009; 5:e1000737. [PMID: 19936292 PMCID: PMC2774947 DOI: 10.1371/journal.pgen.1000737] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/21/2009] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of many eukaryotic genomes and are typically transcriptionally silenced. RNA–dependent RNA polymerase 2 (RDR2) is a component of the RNA–directed DNA methylation (RdDM) silencing pathway. In maize, loss of mediator of paramutation1 (mop1) encoded RDR2 function results in reactivation of transcriptionally silenced Mu transposons and a substantial reduction in the accumulation of 24 nt short-interfering RNAs (siRNAs) that recruit RNA silencing components. An RNA–seq experiment conducted on shoot apical meristems (SAMs) revealed that, as expected based on a model in which RDR2 generates 24 nt siRNAs that suppress expression, most differentially expressed DNA TEs (78%) were up-regulated in the mop1 mutant. In contrast, most differentially expressed retrotransposons (68%) were down-regulated. This striking difference suggests that distinct silencing mechanisms are applied to different silencing templates. In addition, >6,000 genes (24% of analyzed genes), including nearly 80% (286/361) of genes in chromatin modification pathways, were differentially expressed. Overall, two-thirds of differentially regulated genes were down-regulated in the mop1 mutant. This finding suggests that RDR2 plays a significant role in regulating the expression of not only transposons, but also of genes. A re-analysis of existing small RNA data identified both RDR2–sensitive and RDR2–resistant species of 24 nt siRNAs that we hypothesize may at least partially explain the complex changes in the expression of genes and transposons observed in the mop1 mutant. Shoot apical meristems (SAMs) are ultimately responsible for generating all above-ground plant tissues. Recent studies highlighted the effects of chromatin remodeling on the expression of various genes important to SAM development. The transposons that comprise a substantial portion of many eukaryotic genomes are typically transcriptionally silenced, presumably to promote genome stability. We demonstrate that a loss of a key component of the RNA–dependent DNA Methylation (RdDM) silencing pathway affects the expression of not only transposons but also thousands of genes, including nearly 80% of the chromatin-associated genes. Surprisingly, the expression of many transposons and genes is down-regulated via the loss of this component of the silencing pathway. In this study, we have shown that a maize mutation of RDR2 causes significant changes in SAM morphology. In combination, these observations indicate the complexity of transcriptome regulation and the crucial roles of RDR2 on transcriptome regulation, chromatin modification, and SAM development.
Collapse
Affiliation(s)
- Yi Jia
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Damon R. Lisch
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Kazuhiro Ohtsu
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Patrick S. Schnable
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|