1
|
Navarro-Cobos MJ, Brown CJ. Human XIST: Origin and Divergence of a cis-Acting Silencing RNA. Noncoding RNA 2025; 11:35. [PMID: 40407593 PMCID: PMC12101419 DOI: 10.3390/ncrna11030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025] Open
Abstract
Dimorphism of sex chromosomes often leads to a need for dosage compensation. In eutherian mammals, XIST, a long non-coding RNA, is expressed from the X chromosome that will be silenced, triggering X-chromosome inactivation (XCI). XIST originated from the ancestral protein-coding Lnx3 gene with contributions from various mobile elements that contributed to the striking domains of tandem repeats within the first and sixth exons. Modular domains of XIST are now involved in recruiting heterochromatic marks and proteins essential for XCI initiation and maintenance. This review presents a comparative analysis of human XIST with five other eutherian mammals-chimpanzees, cats, pigs, sheep, and mice-examining conservation across exons as well as the tandem repeats. Notably, repeats exhibited higher conservation than exons, underscoring their functional importance. Additionally, a species-specific G repeat, previously described in pigs, was also identified in sheep and cats. These findings provide insights into the domains of XIST, a cis-acting silencer that has been used to proposed to alleviate the impact of a supernumerary chromosome in Down syndrome.
Collapse
Affiliation(s)
| | - Carolyn J. Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
2
|
Feng X, Gao W, Dong W, Chen Y, Murphy RW, Zhang Y, Che J. Genome-Wide Mining of lncRNAs Reveals Their Potential Regulatory Role in the Evolution of Viviparity. Integr Zool 2025. [PMID: 40296238 DOI: 10.1111/1749-4877.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/13/2025] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
Reproduction in vertebrates usually involves egg-laying (oviparity) or live-bearing (viviparity). Oviparity is the ancestral trait from which viviparity has independently evolved more than 100 times in squamate reptiles. This transition involves a series of physiological and structural changes, including the degeneration of eggshell and the evolution of a placenta and differences in the temporal and spatial expression patterns of some functional genes that drive the structural transformation. Long non-coding RNAs (lncRNAs) play important roles in the regulation of gene expression, yet it remains unclear whether they participate in gene expression shifts during the transition from oviparity to viviparity, and if so how. Therefore, we employ deep mining to identify novel lncRNAs of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and P. vlangalii). We construct cis- and trans-regulatory networks between lncRNAs and target genes using the transcriptomic data of oviduct or uteri tissues across reproductive periods. Results show that lncRNAs that regulate eggshell gland developmental genes in the oviparous lizard are lost or less expressed in the viviparous lizard. A number of lncRNAs involved in the regulation of placental development and embryo attachment in viviparous species have no orthologs in oviparous species, and others show little or no expression. Accordingly, lncRNAs may play important regulatory roles in the physiological and structural changes in the transition from oviparity to viviparity. These results open doors to the further elucidation of genetic regulatory networks.
Collapse
Affiliation(s)
- Xiaogang Feng
- State Key Laboratory of Genetic Evolution & Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Wei Gao
- State Key Laboratory of Genetic Evolution & Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjie Dong
- State Key Laboratory of Genetic Evolution & Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yijing Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Evolution & Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Canada
| | - Yaping Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Jing Che
- State Key Laboratory of Genetic Evolution & Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
4
|
Matiz-Ceron L, Okuno M, Itoh T, Yoshida I, Mizushima S, Toyoda A, Jogahara T, Kuroiwa A. Loss of One X and the Y Chromosome Changes the Configuration of the X Inactivation Center in the Genus Tokudaia. Cytogenet Genome Res 2024; 164:23-32. [PMID: 38754392 DOI: 10.1159/000539294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION X chromosome inactivation (XCI) is an essential mechanism for dosage compensation between females and males in mammals. In females, XCI is controlled by a complex, conserved locus termed the X inactivation center (Xic), in which the lncRNA Xist is the key regulator. However, little is known about the Xic in species with unusual sex chromosomes. The genus Tokudaia includes three rodent species endemic to Japan. Tokudaia osimensis and Tokudaia tokunoshimensis lost the Y chromosome (XO/XO), while Tokudaia muenninki (TMU) acquired a neo-X region by fusion of the X chromosome and an autosome (XX/XY). We compared the gene location and structure in the Xic among Tokudaia species. METHODS Gene structure of nine genes in Xic was predicted, and the gene location and genome sequences of Xic were compared between mouse and Tokudaia species. The expression level of the gene was confirmed by transcripts per million calculation using RNA-seq data. RESULTS Compared to mouse, the Xic gene order and location were conserved in Tokudaia species. However, remarkable structure changes were observed in lncRNA genes, Xist and Tsix, in the XO/XO species. In Xist, important functional repeats, B-, C-, D-, and E-repeats, were partially or completely lost due to deletions in these species. RNA-seq data showed that female-specific expression patterns of Xist and Tsix were confirmed in TMU, however, not in the XO/XO species. Additionally, three deletions and one inversion were confirmed in the intergenic region between Jpx and Ftx in the XO/XO species. CONCLUSION Our findings indicate that even if the Xist and Tsix lncRNAs are expressed, they are incapable of producing a successful and lasting XCI in the XO/XO species. We hypothesized that the significant structure change in the intergenic region of Jpx-Ftx resulted in the inability to perform the XCI, and, as a result, a lack of Xist expression. Our results collectively suggest that structural changes in the Xic occurred in the ancestral lineage of XO/XO species, likely due to the loss of one X chromosome and the Y chromosome as a consequence of the degradation of the XCI system.
Collapse
Affiliation(s)
- Luisa Matiz-Ceron
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Ikuya Yoshida
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shusei Mizushima
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takamichi Jogahara
- Faculty of Law, Economics and Management, Okinawa University, Naha, Okinawa, Japan
| | - Asato Kuroiwa
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Chorostecki U, Saus E, Gabaldón T. Probing RNA structural landscapes across Candida yeast genomes. Front Microbiol 2024; 15:1362067. [PMID: 38468856 PMCID: PMC10926079 DOI: 10.3389/fmicb.2024.1362067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the intricate roles of RNA molecules in virulence and host-pathogen interactions can provide valuable insights into combatting infections and improving human health. Although much progress has been achieved in understanding transcriptional regulation during host-pathogen interactions in diverse species, more is needed to know about the structure of pathogen RNAs. This is particularly true for fungal pathogens, including pathogenic yeasts of the Candida genus, which are the leading cause of hospital-acquired fungal infections. Our work addresses the gap between RNA structure and their biology by employing genome-wide structure probing to comprehensively explore the structural landscape of mRNAs and long non-coding RNAs (lncRNAs) in the four major Candida pathogens. Specifically focusing on mRNA, we observe a robust correlation between sequence conservation and structural characteristics in orthologous transcripts, significantly when sequence identity exceeds 50%, highlighting structural feature conservation among closely related species. We investigate the impact of single nucleotide polymorphisms (SNPs) on mRNA secondary structure. SNPs within 5' untranslated regions (UTRs) tend to occur in less structured positions, suggesting structural constraints influencing transcript regulation. Furthermore, we compare the structural properties of coding regions and UTRs, noting that coding regions are generally more structured than UTRs, consistent with similar trends in other species. Additionally, we provide the first experimental characterization of lncRNA structures in Candida species. Most lncRNAs form independent subdomains, similar to human lncRNAs. Notably, we identify hairpin-like structures in lncRNAs, a feature known to be functionally significant. Comparing hairpin prevalence between lncRNAs and protein-coding genes, we find enrichment in lncRNAs across Candida species, humans, and Arabidopsis thaliana, suggesting a conserved role for these structures. In summary, our study offers valuable insights into the interplay between RNA sequence, structure, and function in Candida pathogens, with implications for gene expression regulation and potential therapeutic strategies against Candida infections.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
7
|
Button AC, Hall SD, Ashley EL, McHugh CA. Dissection of protein and RNA regions required for SPEN binding to XIST A-repeat RNA. RNA (NEW YORK, N.Y.) 2024; 30:240-255. [PMID: 38164599 PMCID: PMC10870365 DOI: 10.1261/rna.079713.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
XIST noncoding RNA promotes the initiation of X chromosome silencing by recruiting the protein SPEN to one X chromosome in female mammals. The SPEN protein is also called SHARP (SMRT and HDAC-associated repressor protein) and MINT (Msx-2 interacting nuclear target) in humans. SPEN recruits N-CoR2 and HDAC3 to initiate histone deacetylation on the X chromosome, leading to the formation of repressive chromatin marks and silencing gene expression. We dissected the contributions of different RNA and protein regions to the formation of a human XIST-SPEN complex in vitro and identified novel sequence and structure determinants that may contribute to X chromosome silencing initiation. Binding of SPEN to XIST RNA requires RRM 4 of the protein, in contrast to the requirement of RRM 3 and RRM 4 for specific binding to SRA RNA. Measurements of SPEN binding to full-length, dimeric, trimeric, or other truncated versions of the A-repeat region revealed that high-affinity binding of XIST to SPEN in vitro requires a minimum of four A-repeat segments. SPEN binding to XIST A-repeat RNA changes the accessibility of the RNA at specific nucleotide sequences, as indicated by changes in RNA reactivity through chemical structure probing. Based on computational modeling, we found that inter-repeat duplexes formed by multiple A-repeats can present an unpaired adenosine in the context of a double-stranded region of RNA. The presence of this specific combination of sequence and structural motifs correlates with high-affinity SPEN binding in vitro. These data provide new information on the molecular basis of the XIST and SPEN interaction.
Collapse
Affiliation(s)
- Aileen C Button
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Simone D Hall
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Ethan L Ashley
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Colleen A McHugh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Rivas E. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure. PLoS Comput Biol 2023; 19:e1011262. [PMID: 37450549 PMCID: PMC10370758 DOI: 10.1371/journal.pcbi.1011262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Many biologically important RNAs fold into specific 3D structures conserved through evolution. Knowing when an RNA sequence includes a conserved RNA structure that could lead to new biology is not trivial and depends on clues left behind by conservation in the form of covariation and variation. For that purpose, the R-scape statistical test was created to identify from alignments of RNA sequences, the base pairs that significantly covary above phylogenetic expectation. R-scape treats base pairs as independent units. However, RNA base pairs do not occur in isolation. The Watson-Crick (WC) base pairs stack together forming helices that constitute the scaffold that facilitates the formation of the non-WC base pairs, and ultimately the complete 3D structure. The helix-forming WC base pairs carry most of the covariation signal in an RNA structure. Here, I introduce a new measure of statistically significant covariation at helix-level by aggregation of the covariation significance and covariation power calculated at base-pair-level resolution. Performance benchmarks show that helix-level aggregated covariation increases sensitivity in the detection of evolutionarily conserved RNA structure without sacrificing specificity. This additional helix-level sensitivity reveals an artifact that results from using covariation to build an alignment for a hypothetical structure and then testing the alignment for whether its covariation significantly supports the structure. Helix-level reanalysis of the evolutionary evidence for a selection of long non-coding RNAs (lncRNAs) reinforces the evidence against these lncRNAs having a conserved secondary structure.
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
9
|
de Mello DC, Saito KC, Cristovão MM, Kimura ET, Fuziwara CS. Modulation of EZH2 Activity Induces an Antitumoral Effect and Cell Redifferentiation in Anaplastic Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24097872. [PMID: 37175580 PMCID: PMC10178714 DOI: 10.3390/ijms24097872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare and lethal form of thyroid cancer that requires urgent investigation of new molecular targets involved in its aggressive biology. In this context, the overactivation of Polycomb Repressive Complex 2/EZH2, which induces chromatin compaction, is frequently observed in aggressive solid tumors, making the EZH2 methyltransferase a potential target for treatment. However, the deregulation of chromatin accessibility is yet not fully investigated in thyroid cancer. In this study, EZH2 expression was modulated by CRISPR/Cas9-mediated gene editing and pharmacologically inhibited with EZH2 inhibitor EPZ6438 alone or in combination with the MAPK inhibitor U0126. The results showed that CRISPR/Cas9-induced EZH2 gene editing reduced cell growth, migration and invasion in vitro and resulted in a 90% reduction in tumor growth when EZH2-edited cells were injected into an immunocompromised mouse model. Immunohistochemistry analysis of the tumors revealed reduced tumor cell proliferation and less recruitment of cancer-associated fibroblasts in the EZH2-edited tumors compared to the control tumors. Moreover, EZH2 inhibition induced thyroid-differentiation genes' expression and mesenchymal-to-epithelial transition (MET) in ATC cells. Thus, this study shows that targeting EZH2 could be a promising neoadjuvant treatment for ATC, as it promotes antitumoral effects in vitro and in vivo and induces cell differentiation.
Collapse
Affiliation(s)
- Diego Claro de Mello
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Kelly Cristina Saito
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marcella Maringolo Cristovão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
10
|
Rivas E. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536965. [PMID: 37131783 PMCID: PMC10153129 DOI: 10.1101/2023.04.14.536965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many biologically important RNAs fold into specific 3D structures conserved through evolution. Knowing when an RNA sequence includes a conserved RNA structure that could lead to new biology is not trivial and depends on clues left behind by conservation in the form of covariation and variation. For that purpose, the R-scape statistical test was created to identify from alignments of RNA sequences, the base pairs that significantly covary above phylogenetic expectation. R-scape treats base pairs as independent units. However, RNA base pairs do not occur in isolation. The Watson-Crick (WC) base pairs stack together forming helices that constitute the scaffold that facilitates the formation of the non-WC base pairs, and ultimately the complete 3D structure. The helix-forming WC base pairs carry most of the covariation signal in an RNA structure. Here, I introduce a new measure of statistically significant covariation at helix-level by aggregation of the covariation significance and covariation power calculated at base-pair-level resolution. Performance benchmarks show that helix-level aggregated covariation increases sensitivity in the detection of evolutionarily conserved RNA structure without sacrificing specificity. This additional helix-level sensitivity reveals an artifact that results from using covariation to build an alignment for a hypothetical structure and then testing the alignment for whether its covariation significantly supports the structure. Helix-level reanalysis of the evolutionary evidence for a selection of long non-coding RNAs (lncRNAs) reinforces the evidence against these lncRNAs having a conserved secondary structure. Availability Helix aggregated E-values are integrated in the R-scape software package (version 2.0.0.p and higher). The R-scape web server eddylab.org/R-scape includes a link to download the source code. Contact elenarivas@fas.harvard.edu. Supplementary information Supplementary data and code are provided with this manuscript at rivaslab.org .
Collapse
|
11
|
Nickbarg EB, Spencer KB, Mortison JD, Lee JT. Targeting RNA with small molecules: lessons learned from Xist RNA. RNA (NEW YORK, N.Y.) 2023; 29:463-472. [PMID: 36725318 PMCID: PMC10019374 DOI: 10.1261/rna.079523.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although more than 98% of the human genome is noncoding, nearly all drugs on the market target one of about 700 disease-related proteins. However, an increasing number of diseases are now being attributed to noncoding RNA and the ability to target them would vastly expand the chemical space for drug development. We recently devised a screening strategy based upon affinity-selection mass spectrometry and succeeded in identifying bioactive compounds for the noncoding RNA prototype, Xist. One such compound, termed X1, has drug-like properties and binds specifically to the RepA motif of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that X1 changes the conformation of RepA in solution, thereby explaining the displacement of cognate interacting protein factors (PRC2 and SPEN) and inhibition of X-chromosome inactivation. In this Perspective, we discuss lessons learned from these proof-of-concept experiments and suggest that RNA can be systematically targeted by drug-like compounds to disrupt RNA structure and function.
Collapse
Affiliation(s)
| | | | | | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Lee WH, Li K, Lu Z. Chemical crosslinking and ligation methods for in vivo analysis of RNA structures and interactions. Methods Enzymol 2023; 691:253-281. [PMID: 37914449 PMCID: PMC10994722 DOI: 10.1016/bs.mie.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
RNA structures and interactions in living cells drive a variety of biological processes and play critical roles in physiology and disease states. However, studies of RNA structures and interactions have been challenging due to limitations in available technologies. Direct determination of structures in vitro has been only possible to a small number of RNAs with limited sizes and conformations. We recently introduced two chemical crosslink-ligation techniques that enabled studies of transcriptome-wide secondary and tertiary structures and their dynamics. In a dramatically improved version of the psoralen analysis of RNA interactions and structures (PARIS2) method, we detailed the synthesis and use of amotosalen, a highly soluble psoralen analogue, and enhanced enzymology for higher efficiency duplex capture. We also introduced spatial 2'-hydroxyl acylation reversible crosslinking (SHARC) with exonuclease (exo) trimming, a method which utilizes a novel crosslinker class that targets the 2'-OH to capture three-dimensional (3D) structures. Both are powerful orthogonal approaches for solving in vivo RNA structure and interactions, integrating crosslinking, exo trimming, proximity ligation, and high throughput sequencing. In this chapter, we present a detailed protocol for the methods and highlight steps that outperform existing crosslink-ligation approaches.
Collapse
Affiliation(s)
- Wilson H Lee
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences
| | - Kongpan Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
13
|
Zhong Y, Ashley CL, Steain M, Ataide SF. Assessing the suitability of long non-coding RNAs as therapeutic targets and biomarkers in SARS-CoV-2 infection. Front Mol Biosci 2022; 9:975322. [PMID: 36052163 PMCID: PMC9424846 DOI: 10.3389/fmolb.2022.975322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts that are over 200 nucleotides and rarely encode proteins or peptides. They regulate gene expression and protein activities and are heavily involved in many cellular processes such as cytokine secretion in respond to viral infection. In severe COVID-19 cases, hyperactivation of the immune system may cause an abnormally sharp increase in pro-inflammatory cytokines, known as cytokine release syndrome (CRS), which leads to severe tissue damage or even organ failure, raising COVID-19 mortality rate. In this review, we assessed the correlation between lncRNAs expression and cytokine release syndrome by comparing lncRNA profiles between COVID-19 patients and health controls, as well as between severe and non-severe cases. We also discussed the role of lncRNAs in CRS contributors and showed that the lncRNA profiles display consistency with patients’ clinic symptoms, thus suggesting the potential of lncRNAs as drug targets or biomarkers in COVID-19 treatment.
Collapse
Affiliation(s)
- Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Caroline L. Ashley
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Megan Steain
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sandro Fernandes Ataide
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sandro Fernandes Ataide,
| |
Collapse
|
14
|
Jin J, Du M, Wang J, Guo Y, Zhang J, Zuo H, Hou Y, Wang S, Lv W, Bai W, Wang J, Zhan X, Peng Y, Tong Q, Chai J, Xu Z, Zuo B. Conservative analysis of Synaptopodin-2 intron sense-overlapping lncRNA reveals its novel function in promoting muscle atrophy. J Cachexia Sarcopenia Muscle 2022; 13:2017-2030. [PMID: 35592920 PMCID: PMC9397560 DOI: 10.1002/jcsm.13012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dissection of the regulatory pathways that control skeletal muscle development and atrophy is important for the treatment of muscle wasting. Long noncoding RNA (lncRNA) play important roles in various stages of muscle development. We previously reported that Synaptopodin-2 (SYNPO2) intron sense-overlapping lncRNA (SYISL) regulates myogenesis through an interaction with enhancer of zeste homologue 2 (EZH2). However, it remains unclear whether SYISL homologues exist in humans and pigs, and whether the functions and mechanisms of these homologues are conserved among species. METHODS Bioinformatics, cell fractionation, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used for the identification and molecular characterization of SYISL homologues in humans and pigs. Effects on myogenesis and muscle atrophy were determined via loss-of-function or gain-of-function experiments using C2C12 myoblasts, myogenic progenitor cells, dexamethasone (DEX), and aging-induced muscle atrophy models. RNA pulldown, RNA immunoprecipitation, dual luciferase reporting, and co-transfection experiments were used to explore the mechanisms of SYISL interactions with proteins and miRNAs. RESULTS We identified SYISL homologues in humans (designated hSYISL) and pigs (designated pSYISL). Functional experiments demonstrated that hSYISL and pSYISL regulate myogenesis through interactions with EZH2. Interestingly, we showed that SYISL functions to regulate muscle atrophy and sarcopenia through comparative analysis. SYISL is significantly up-regulated after muscle atrophy (P < 0.01); it significantly promotes muscle atrophy in DEX-induced muscle atrophy models (P < 0.01). SYISL knockdown or knockout alleviates muscle atrophy and sarcopenia in DEX-induced and aged mice. The tibialis anterior (TA) muscle weight of 3-month-old wild-type (WT) mice decreased by 33.24% after DEX treatment (P < 0.001), while the muscle weight loss of 3-month-old SYISL knockout mice was only 18.20% after DEX treatment (P < 0.001). SYISL knockout in 18-month-old WT mice significantly increased the weights of quadriceps (Qu), gastrocnemius (Gas), and TA muscles by 10.45% (P < 0.05), 13.95% (P < 0.01), and 24.82% (P < 0.05), respectively. Mechanistically, SYISL increases the expression levels of the muscle atrophy genes forkhead box protein O3a (FoxO3a), muscle ring finger 1 (MuRF1), and muscle atrophy-related F-box (Atrogin-1) via sponging of miR-23a-3p/miR-103-3p/miR-205-5p and thus promotes muscle atrophy. Additionally, we verified that human SYISL overexpression in muscles of 18-month-old WT mice significantly decreased the weights of Gas, Qu, and TA muscles by 7.76% (P < 0.01), 12.26% (P < 0.05), and 13.44% (P < 0.01), respectively, and accelerates muscle atrophy through conserved mechanisms. CONCLUSIONS Our results identify SYISL as a conserved lncRNA that modulates myogenesis in mice, pigs, and humans. We also demonstrated its previously unknown ability to promote muscle atrophy.
Collapse
Affiliation(s)
- Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mengmeng Du
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yubo Guo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiali Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yunqing Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Bai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jin Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jin Chai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
15
|
Ross CJ, Ulitsky I. Discovering functional motifs in long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1708. [PMID: 34981665 DOI: 10.1002/wrna.1708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are products of pervasive transcription that closely resemble messenger RNAs on the molecular level, yet function through largely unknown modes of action. The current model is that the function of lncRNAs often relies on specific, typically short, conserved elements, connected by linkers in which specific sequences and/or structures are less important. This notion has fueled the development of both computational and experimental methods focused on the discovery of functional elements within lncRNA genes, based on diverse signals such as evolutionary conservation, predicted structural elements, or the ability to rescue loss-of-function phenotypes. In this review, we outline the main challenges that the different methods need to overcome, describe the recently developed approaches, and discuss their respective limitations. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Jones AN, Tikhaia E, Mourão A, Sattler M. Structural effects of m6A modification of the Xist A-repeat AUCG tetraloop and its recognition by YTHDC1. Nucleic Acids Res 2022; 50:2350-2362. [PMID: 35166835 PMCID: PMC8887474 DOI: 10.1093/nar/gkac080] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The A-repeat region of the lncRNA Xist is critical for X inactivation and harbors several N6-methyladenosine (m6A) modifications. How the m6A modification affects the conformation of the conserved AUCG tetraloop hairpin of the A-repeats and how it can be recognized by the YTHDC1 reader protein is unknown. Here, we report the NMR solution structure of the (m6A)UCG hairpin, which reveals that the m6A base extends 5′ stacking of the A-form helical stem, resembling the unmethylated AUCG tetraloop. A crystal structure of YTHDC1 bound to the (m6A)UCG tetraloop shows that the (m6A)UC nucleotides are recognized by the YTH domain of YTHDC1 in a single-stranded conformation. The m6A base inserts into the aromatic cage and the U and C bases interact with a flanking charged surface region, resembling the recognition of single-stranded m6A RNA ligands. Notably, NMR and fluorescence quenching experiments show that the binding requires local unfolding of the upper stem region of the (m6A)UCG hairpin. Our data show that m6A can be readily accommodated in hairpin loop regions, but recognition by YTH readers requires local unfolding of flanking stem regions. This suggests how m6A modifications may regulate lncRNA function by modulating RNA structure.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ekaterina Tikhaia
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
17
|
Li L, Jin Y, Wang X, Wang L, Sun Y, Luo Y, Ni X, Lu Q, Wei W, Zhi X, Yu J, Zhu W, Zhou P. Long noncoding RNA ENST00000508435 promotes migration of breast cancer via FXR 1. Cell Adh Migr 2021; 15:140-151. [PMID: 34057025 PMCID: PMC8168597 DOI: 10.1080/19336918.2021.1921402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
LncRNA plays a critical role in tumor progression. However, the role it executes in breast cancer is still unclear. Here, we report a newly discovered lncRNA, ENST00000508435, which could be remarkably up-regulated in breast cancer cells and tissues. We found that the expression of ENST00000508435 was positively correlated with tumor size, lymph node metastasis and HER2. More interesting, overexpression of ENST00000508435 significantly increased cell migration, while specific knockdown led to the opposite. RNA pull-down and RNA immunoprecipitation assays demonstrated that ENST00000508435 could directly bind to FXR1 to promote tumor metastasis. ENST00000508435 and FXR1 were positively correlated. FXR1 was also significantly up-regulated in breast tumors. Taken together, we propose that ENST00000508435 regulates FXR1 to promote breast cancer metastasis.
Collapse
Affiliation(s)
- Luying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Youping Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Pudong Hospital, Fudan University, Shanghai, China
| | - Yangbai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yihong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenbo Wei
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jerry Yu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Keihani S, Kluever V, Fornasiero EF. Brain Long Noncoding RNAs: Multitask Regulators of Neuronal Differentiation and Function. Molecules 2021; 26:molecules26133951. [PMID: 34203457 PMCID: PMC8272081 DOI: 10.3390/molecules26133951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a 'coding molecule' has been largely surpassed, together with the conception that lncRNAs only represent 'waste material' produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.
Collapse
|
20
|
Wang XW, Liu CX, Chen LL, Zhang QC. RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol 2021; 17:755-766. [PMID: 34172967 DOI: 10.1038/s41589-021-00805-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
RNA molecules fold into complex structures that enable their diverse functions in cells. Recent revolutionary innovations in transcriptome-wide RNA structural probing of living cells have ushered in a new era in understanding RNA functions. Here, we summarize the latest technological advances for probing RNA secondary structures and discuss striking discoveries that have linked RNA regulation and biological processes through interrogation of RNA structures. In particular, we highlight how different long noncoding RNAs form into distinct secondary structures that determine their modes of interactions with protein partners to realize their unique functions. These dynamic structures mediate RNA regulatory functions through altering interactions with proteins and other RNAs. We also outline current methodological hurdles and speculate about future directions for development of the next generation of RNA structure-probing technologies of higher sensitivity and resolution, which could then be applied in increasingly physiologically relevant studies.
Collapse
Affiliation(s)
- Xi-Wen Wang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
21
|
Khoury G, Lee MY, Ramarathinam SH, McMahon J, Purcell AW, Sonza S, Lewin SR, Purcell DFJ. The RNA-Binding Proteins SRP14 and HMGB3 Control HIV-1 Tat mRNA Processing and Translation During HIV-1 Latency. Front Genet 2021; 12:680725. [PMID: 34194479 PMCID: PMC8236859 DOI: 10.3389/fgene.2021.680725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Tat protein is essential for virus production. RNA-binding proteins that facilitate Tat production may be absent or downregulated in resting CD4+ T-cells, the main reservoir of latent HIV in people with HIV (PWH) on antiretroviral therapy (ART). In this study, we examined the role of Tat RNA-binding proteins on the expression of Tat and control of latent and productive infection. Affinity purification coupled with mass spectrometry analysis was used to detect binding partners of MS2-tagged tat mRNA in a T cell-line model of HIV latency. The effect of knockdown and overexpression of the proteins of interest on Tat transactivation and translation was assessed by luciferase-based reporter assays and infections with a dual color HIV reporter virus. Out of the 243 interactions identified, knockdown of SRP14 (Signal Recognition Particle 14) negatively affected tat mRNA processing and translation as well as Tat-mediated transactivation, which led to an increase in latent infection. On the other hand, knockdown of HMGB3 (High Mobility Group Box 3) resulted in an increase in Tat transactivation and translation as well as an increase in productive infection. Footprinting experiments revealed that SRP14 and HMGB3 proteins bind to TIM-TAM, a conserved RNA sequence-structure in tat mRNA that functions as a Tat IRES modulator of tat mRNA. Overexpression of SRP14 in resting CD4+ T-cells from patients on ART was sufficient to reverse HIV-1 latency and induce virus production. The role of SRP14 and HMGB3 proteins in controlling HIV Tat expression during latency will be further assessed as potential drug targets.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Y. Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sri H. Ramarathinam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James McMahon
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Reis RS, Deforges J, Schmidt RR, Schippers JHM, Poirier Y. An antisense noncoding RNA enhances translation via localized structural rearrangements of its cognate mRNA. THE PLANT CELL 2021; 33:1381-1397. [PMID: 33793857 DOI: 10.1093/plcell/koab010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
A large portion of eukaryotic genes are associated with noncoding, natural antisense transcripts (NATs). Despite sharing extensive sequence complementarity with their sense mRNAs, mRNA-NAT pairs elusively often evade dsRNA-cleavage and siRNA-triggered silencing. More surprisingly, some NATs enhance translation of their sense mRNAs by yet unknown mechanism(s). Here, we show that translation enhancement of the rice (Oryza sativa) PHOSPHATE1.2 (PHO1.2) mRNA is enabled by specific structural rearrangements guided by its noncoding antisense RNA (cis-NATpho1.2). Their interaction in vitro revealed no evidence of widespread intermolecular dsRNA formation, but rather specific local changes in nucleotide base pairing, leading to higher flexibility of PHO1.2 mRNA at a key high guanine-cytosine�(GC) regulatory region inhibiting translation, ∼350-nt downstream of the start codon. Sense-antisense RNA interaction increased formation of the 80S complex in PHO1.2, possibly by inducing structural rearrangement within this inhibitory region, thus making this mRNA more accessible to 60S. This work presents a framework for nucleotide resolution studies of functional mRNA-antisense pairs.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Romy R Schmidt
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Chorostecki U, Saus E, Gabaldón T. Structural characterization of NORAD reveals a stabilizing role of spacers and two new repeat units. Comput Struct Biotechnol J 2021; 19:3245-3254. [PMID: 34141143 PMCID: PMC8192489 DOI: 10.1016/j.csbj.2021.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can perform a variety of key cellular functions by interacting with proteins and other RNAs. Recent studies have shown that the functions of lncRNAS are largely mediated by their structures. However, our structural knowledge for most lncRNAS is limited to sequence-based computational predictions. Non-coding RNA activated by DNA damage (NORAD) is an atypical lncRNA due to its abundant expression and high sequence conservation. NORAD regulates genomic stability by interacting with proteins and microRNAs. Previous sequence-based characterization has identified a modular organization of NORAD composed of several NORAD repeat units (NRUs). These units comprise the protein-binding elements and are separated by regular spacers. Here, we experimentally determine for the first time the secondary structure of NORAD using the nextPARS approach. Our results suggest that the spacer regions provide structural stability to NRUs. Furthermore, we uncover two previously unreported NRUs, and determine the core structural motifs conserved across NRUs. Overall, these findings will help to elucidate the function and evolution of NORAD.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Alfeghaly C, Sanchez A, Rouget R, Thuillier Q, Igel-Bourguignon V, Marchand V, Branlant C, Motorin Y, Behm-Ansmant I, Maenner S. Implication of repeat insertion domains in the trans-activity of the long non-coding RNA ANRIL. Nucleic Acids Res 2021; 49:4954-4970. [PMID: 33872355 PMCID: PMC8136789 DOI: 10.1093/nar/gkab245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
Long non-coding RNAs have emerged as critical regulators of cell homeostasis by modulating gene expression at chromatin level for instance. Here, we report that the lncRNA ANRIL, associated with several pathologies, binds to thousands of loci dispersed throughout the mammalian genome sharing a 21-bp motif enriched in G/A residues. By combining ANRIL genomic occupancy with transcriptomic analysis, we established a list of 65 and 123 genes potentially directly activated and silenced by ANRIL in trans, respectively. We also found that Exon8 of ANRIL, mainly made of transposable elements, contributes to ANRIL genomic association and consequently to its trans-activity. Furthermore, we showed that Exon8 favors ANRIL's association with the FIRRE, TPD52L1 and IGFBP3 loci to modulate their expression through H3K27me3 deposition. We also investigated the mechanisms engaged by Exon8 to favor ANRIL's association with the genome. Our data refine ANRIL's trans-activity and highlight the functional importance of TEs on ANRIL's activity.
Collapse
Affiliation(s)
| | | | - Raphael Rouget
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Valérie Igel-Bourguignon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | | | - Yuri Motorin
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
25
|
Rivas E. Evolutionary conservation of RNA sequence and structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1649. [PMID: 33754485 PMCID: PMC8250186 DOI: 10.1002/wrna.1649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
An RNA structure prediction from a single‐sequence RNA folding program is not evidence for an RNA whose structure is important for function. Random sequences have plausible and complex predicted structures not easily distinguishable from those of structural RNAs. How to tell when an RNA has a conserved structure is a question that requires looking at the evolutionary signature left by the conserved RNA. This question is important not just for long noncoding RNAs which usually lack an identified function, but also for RNA binding protein motifs which can be single stranded RNAs or structures. Here we review recent advances using sequence and structural analysis to determine when RNA structure is conserved or not. Although covariation measures assess structural RNA conservation, one must distinguish covariation due to RNA structure from covariation due to independent phylogenetic substitutions. We review a statistical test to measure false positives expected under the null hypothesis of phylogenetic covariation alone (specificity). We also review a complementary test that measures power, that is, expected covariation derived from sequence variation alone (sensitivity). Power in the absence of covariation signals the absence of a conserved RNA structure. We analyze artifacts that falsely identify conserved RNA structure such as the misuse of programs that do not assess significance, the use of inappropriate statistics confounded by signals other than covariation, or misalignments that induce spurious covariation. Among artifacts that obscure the signal of a conserved RNA structure, we discuss the inclusion of pseudogenes in alignments which increase power but destroy covariation. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Lu Z, Guo JK, Wei Y, Dou DR, Zarnegar B, Ma Q, Li R, Zhao Y, Liu F, Choudhry H, Khavari PA, Chang HY. Structural modularity of the XIST ribonucleoprotein complex. Nat Commun 2020; 11:6163. [PMID: 33268787 PMCID: PMC7710737 DOI: 10.1038/s41467-020-20040-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs are thought to regulate gene expression by organizing protein complexes through unclear mechanisms. XIST controls the inactivation of an entire X chromosome in female placental mammals. Here we develop and integrate several orthogonal structure-interaction methods to demonstrate that XIST RNA-protein complex folds into an evolutionarily conserved modular architecture. Chimeric RNAs and clustered protein binding in fRIP and eCLIP experiments align with long-range RNA secondary structure, revealing discrete XIST domains that interact with distinct sets of effector proteins. CRISPR-Cas9-mediated permutation of the Xist A-repeat location shows that A-repeat serves as a nucleation center for multiple Xist-associated proteins and m6A modification. Thus modular architecture plays an essential role, in addition to sequence motifs, in determining the specificity of RBP binding and m6A modification. Together, this work builds a comprehensive structure-function model for the XIST RNA-protein complex, and suggests a general strategy for mechanistic studies of large ribonucleoprotein assemblies.
Collapse
Affiliation(s)
- Zhipeng Lu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA.
| | - Jimmy K Guo
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Diana R Dou
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Brian Zarnegar
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Qing Ma
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Synthetic Biology Department, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, PR China
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Fan Liu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
| | - Hani Choudhry
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, 22252, Saudi Arabia
| | - Paul A Khavari
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Graf J, Kretz M. From structure to function: Route to understanding lncRNA mechanism. Bioessays 2020; 42:e2000027. [PMID: 33164244 DOI: 10.1002/bies.202000027] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/03/2020] [Indexed: 12/13/2022]
Abstract
RNAs have emerged as a major target for diagnostics and therapeutics approaches. Regulatory nonprotein-coding RNAs (ncRNAs) in particular display remarkable versatility. They can fold into complex structures and interact with proteins, DNA, and other RNAs, thus modulating activity, localization, or interactome of multi-protein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of regulatory control. Interestingly, long noncoding RNAs (lncRNAs) tend to acquire complex secondary and tertiary structures and their function-in many cases-is dependent on structural conservation rather than primary sequence conservation. Whereas for many proteins, structure and its associated function are closely connected, for lncRNAs, the structural domains that determine functionality and its interactome are still not well understood. Numerous approaches for analyzing the structural configuration of lncRNAs have been developed recently. Here, will provide an overview of major experimental approaches used in the field, and discuss the potential benefit of using combinatorial strategies to analyze lncRNA modes of action based on structural information.
Collapse
Affiliation(s)
- Johannes Graf
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Rivas E, Clements J, Eddy SR. Estimating the power of sequence covariation for detecting conserved RNA structure. Bioinformatics 2020; 36:3072-3076. [PMID: 32031582 PMCID: PMC7214042 DOI: 10.1093/bioinformatics/btaa080] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distinguishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for several long non-coding RNAs previously shown to lack covariation support do have adequate covariation detection power, providing additional evidence against their proposed conserved structures. AVAILABILITY AND IMPLEMENTATION The R-scape web server is at eddylab.org/R-scape, with a link to download the source code. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sean R Eddy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol 2020; 55:662-690. [PMID: 33043695 DOI: 10.1080/10409238.2020.1828259] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
30
|
Abstract
The interaction between polycomb-repressive complexes 1/2 (PRC1/2) and long non-coding RNA (lncRNA), such as the X inactive specific transcript Xist and the HOX transcript antisense RNA (HOTAIR), has been the subject of intense debate. While cross-linking, immuno-precipitation and super-resolution microscopy argue against direct interaction of Polycomb with some lncRNAs, there is increasing evidence supporting the ability of both PRC1 and PRC2 to functionally associate with RNA. Recent data indicate that these interactions are in most cases spurious, but nonetheless crucial for a number of cellular activities. In this review, we suggest that while PRC1/2 recruitment by HOTAIR might be direct, in the case of Xist, it might occur indirectly and, at least in part, through the process of liquid-liquid phase separation. We present recent models of lncRNA-mediated PRC1/2 recruitment to their targets and describe potential RNA-mediated roles in the three-dimensional organization of the nucleus.
Collapse
Affiliation(s)
- Andrea Cerase
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluis Companys, 08010 Barcelona, Spain.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
31
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
32
|
Malan-Müller S, de Souza VBC, Daniels WMU, Seedat S, Robinson MD, Hemmings SMJ. Shedding Light on the Transcriptomic Dark Matter in Biological Psychiatry: Role of Long Noncoding RNAs in D-cycloserine-Induced Fear Extinction in Posttraumatic Stress Disorder. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:352-369. [PMID: 32453623 DOI: 10.1089/omi.2020.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological psychiatry scholarship on posttraumatic stress disorder (PTSD) is making strides with new omics technologies. In this context, there is growing recognition that noncoding RNAs are vital for the regulation of gene and protein expression. Long noncoding RNAs (lncRNAs) can modulate splicing, influence RNA editing, messenger RNA (mRNA) stability, translation activation, and microRNA-mRNA interactions, are highly abundant in the brain, and have been implicated in neurodevelopmental disorders. The largest subclass of lncRNAs is long intergenic noncoding RNAs (lincRNAs). We report on lincRNAs and their predicted mRNA targets associated with fear extinction induced by co-administration of D-cycloserine and behavioral fear extinction in a PTSD animal model. Forty-three differentially expressed lincRNAs and 190 differentially expressed mRNAs were found to be associated with fear extinction. Eight lincRNAs were predicted to interact with and regulate 108 of these mRNAs, while seven lincRNAs were predicted to interact with 22 of their pre-mRNA transcripts. Based on the functions of their target mRNAs, we inferred that these lincRNAs bind to nucleotides, ribonucleotides, and proteins; subsequently influence nervous system development, morphology, and immune system functioning; and could be associated with nervous system and mental health disorders. We found the quantitative trait loci that overlapped with fear extinction-related lincRNAs included traits such as serum corticosterone level, neuroinflammation, anxiety, stress, and despair-related responses. To the best of our knowledge, this is the first study to identify lincRNAs and their RNA targets with a putative role in transcriptional regulation during fear extinction in the context of an animal model of PTSD.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Vladimir B C de Souza
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Willie M U Daniels
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
33
|
Khoury G, Mackenzie C, Ayadi L, Lewin SR, Branlant C, Purcell DFJ. Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Res 2020; 48:2643-2660. [PMID: 31875221 PMCID: PMC7049722 DOI: 10.1093/nar/gkz1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tat protein is essential to fully activate HIV transcription and processing of viral mRNA, and therefore determines virus expression in productive replication and the establishment and maintenance of latent infection. Here, we used thermodynamic and structure analyses to define a highly conserved sequence-structure in tat mRNA that functions as Tat IRES modulator of tat mRNA (TIM-TAM). By impeding cap-dependent ribosome progression during authentic spliced tat mRNA translation, TIM-TAM stable structure impacts on timing and level of Tat protein hence controlling HIV production and infectivity along with promoting latency. TIM-TAM also adopts a conformation that mediates Tat internal ribosome entry site (IRES)-dependent translation during the early phases of infection before provirus integration. Our results document the critical role of TIM-TAM in Tat expression to facilitate virus reactivation from latency, with implications for HIV treatment and drug development.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia.,Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lilia Ayadi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3010, Australia
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
34
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non-coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020; 59:7891-7896. [PMID: 31981397 PMCID: PMC7318606 DOI: 10.1002/anie.201916447] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Indexed: 11/26/2022]
Abstract
We present herein a novel nitroxide spin label-containing RNA triphosphate TPT3NO and its application for site-specific spin-labeling of RNA through in vitro transcription using an expanded genetic alphabet. Our strategy allows the facile preparation of spin-labeled RNAs with sizes ranging from short RNA oligonucleotides to large, complex RNA molecules with over 370 nucleotides by standard in vitro transcription. As a proof of concept, inter-spin distance distributions are measured by pulsed electron paramagnetic resonance (EPR) spectroscopy in short self-complementary RNA sequences and in a well-studied 185 nucleotide non-coding RNA, the B. subtilis glmS ribozyme. The approach is then applied to probe for the first time the folding of the 377 nucleotide A-region of the long non-coding RNA Xist, by PELDOR.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Frank Eggert
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Christine Wuebben
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Lisa Bornewasser
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Olav Schiemann
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
35
|
Abstract
RNA proximity ligation is a set of molecular biology techniques used to analyze the conformations and spatial proximity of RNA molecules within cells. A typical experiment starts with cross-linking of a biological sample using UV light or psoralen, followed by partial fragmentation of RNA, RNA-RNA ligation, library preparation, and high-throughput sequencing. In the past decade, proximity ligation has been used to study structures of individual RNAs, networks of interactions between small RNAs and their targets, and whole RNA-RNA interactomes, in models ranging from bacteria to animal tissues and whole animals. Here, we provide an overview of the field, highlight the main findings, review the recent experimental and computational developments, and provide troubleshooting advice for new users. In the final section, we draw parallels between DNA and RNA proximity ligation and speculate on possible future research directions.
Collapse
Affiliation(s)
- Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Yue Wan
- Stem Cell and Regenerative Medicine, Genome Institute of Singapore, Singapore 138672.,School of Biological Sciences, Nanyang Technological University, Singapore 637551.,Department of Biochemistry, National University of Singapore, Singapore 117596
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
36
|
Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Mol Biol Rep 2020; 47:3305-3317. [PMID: 32248382 DOI: 10.1007/s11033-020-05400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
In higher plants, flower development is a result of crosstalk between many factors like photoperiod, vernalization, hormone concentration, epigenetic modification etc. and is also regulated by non-coding RNAs (ncRNAs). In the present study, we are reporting the involvement of long non-coding RNAs (lncRNAs) and miRNAs during the process of flower development in Cajanus scarabaeoides, an important wild relative of pigeonpea. The transcriptome of floral and leaf tissues revealed a total of 1672 lncRNAs and 57 miRNAs being expressed during flower development. Prediction analysis of identified lncRNAs showed that 1593 lncRNAs were targeting 3420 mRNAs and among these, 98 were transcription factors (TFs) belonging to 48 groups. All the identified 57 miRNAs were novel, suggesting their genera specificity. Prediction of the secondary structure of lncRNAs and miRNAs followed by interaction analysis revealed that 199 lncRNAs could interact with 47 miRNAs where miRNAs were acting in the root of interaction. Gene Ontology of the ncRNAs and their targets showed the potential role of lncRNAs and miRNAs in the flower development of C. scarabaeoides. Among the identified interactions, 17 lncRNAs were endogenous target mimics (eTMs) for miRNAs that target flowering-related transcription factors. Expression analysis of identified transcripts revealed that higher expression of Csa-lncRNA_1231 in the bud sequesters Csa-miRNA-156b by indirectly mimicking the miRNA and leading to increased expression of flower-specific SQUAMOSA promoter-binding protein-like (SPL-12) TF indicating their potential role in flower development. The present study will help in understanding the molecular regulatory mechanism governing the induction of flowering in C. scarabaeoides.
Collapse
|
37
|
Connerty P, Lock RB, de Bock CE. Long Non-coding RNAs: Major Regulators of Cell Stress in Cancer. Front Oncol 2020; 10:285. [PMID: 32266130 PMCID: PMC7099402 DOI: 10.3389/fonc.2020.00285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Cellular stress can occur in many forms; oxidative stress caused by reactive oxygen species (ROS), metabolic stress from increased metabolic programs and genotoxic stress in the form of DNA damage and disrepair. In most instances, these different types of cell stress initiate programmed cell death. However, in cancer, cells are able to resist cellular stress and by-pass growth limiting checkpoints. Recent findings have now revealed that the large and heterogenous RNA species known as long non-coding RNAs (lncRNAs) are major players in regulating and overcoming cancer cell stress. lncRNAs constitute a significant fraction of the genes differentially expressed in response to cell stress and contribute to the management of downstream cellular processes, including the regulation of key stress responses such as metabolic stress, oxidative stress and genotoxic stress. This review highlights the complex regulatory role of lncRNAs in the cell stress response of cancer by providing an overview of key examples from recent literature.
Collapse
Affiliation(s)
- Patrick Connerty
- Children's Cancer Institute, School of Women's and Children's Health, Lowy Cancer Centre, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Charles E. de Bock
- Children's Cancer Institute, School of Women's and Children's Health, Lowy Cancer Centre, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
38
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non‐coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Frank Eggert
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Christine Wuebben
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Lisa Bornewasser
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
39
|
Matveishina E, Antonov I, Medvedeva YA. Practical Guidance in Genome-Wide RNA:DNA Triple Helix Prediction. Int J Mol Sci 2020; 21:E830. [PMID: 32012884 PMCID: PMC7037363 DOI: 10.3390/ijms21030830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play a key role in many cellular processes including chromatin regulation. To modify chromatin, lncRNAs often interact with DNA in a sequence-specific manner forming RNA:DNA triple helices. Computational tools for triple helix search do not always provide genome-wide predictions of sufficient quality. Here, we used four human lncRNAs (MEG3, DACOR1, TERC and HOTAIR) and their experimentally determined binding regions for evaluating triplex parameters that provide the highest prediction accuracy. Additionally, we combined triplex prediction with the lncRNA secondary structure and demonstrated that considering only single-stranded fragments of lncRNA can further improve DNA-RNA triplexes prediction.
Collapse
Affiliation(s)
- Elena Matveishina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
| | - Ivan Antonov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, 117971 Moscow, Russia
| |
Collapse
|
40
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
41
|
Bousard A, Raposo AC, Żylicz JJ, Picard C, Pires VB, Qi Y, Gil C, Syx L, Chang HY, Heard E, da Rocha ST. The role of Xist-mediated Polycomb recruitment in the initiation of X-chromosome inactivation. EMBO Rep 2019; 20:e48019. [PMID: 31456285 PMCID: PMC6776897 DOI: 10.15252/embr.201948019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Xist RNA has been established as the master regulator of X-chromosome inactivation (XCI) in female eutherian mammals, but its mechanism of action remains unclear. By creating novel Xist-inducible mutants at the endogenous locus in male mouse embryonic stem (ES) cells, we dissect the role of the conserved A-B-C-F repeats in the initiation of XCI. We find that transcriptional silencing can be largely uncoupled from Polycomb repressive complex 1 and complex 2 (PRC1/2) recruitment, which requires B and C repeats. Xist ΔB+C RNA specifically loses interaction with PCGF3/5 subunits of PRC1, while binding of other Xist partners is largely unaffected. However, a slight relaxation of transcriptional silencing in Xist ΔB+C indicates a role for PRC1/2 proteins in early stabilization of gene repression. Distinct modules within the Xist RNA are therefore involved in the convergence of independent chromatin modification and gene repression pathways. In this context, Polycomb recruitment seems to be of moderate relevance in the initiation of silencing.
Collapse
Affiliation(s)
- Aurélie Bousard
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Ana Cláudia Raposo
- Instituto de Medicina MolecularJoão Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Jan Jakub Żylicz
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christel Picard
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Vanessa Borges Pires
- Instituto de Medicina MolecularJoão Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Yanyan Qi
- Center for Dynamic Personal RegulomesStanford UniversityStanfordCAUSA
| | - Cláudia Gil
- Instituto de Medicina MolecularJoão Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Laurène Syx
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Howard Y Chang
- Center for Dynamic Personal RegulomesStanford UniversityStanfordCAUSA
- Howard Hughes Medical InstituteStanford UniversityStanfordCAUSA
| | - Edith Heard
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Simão Teixeira da Rocha
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
- Instituto de Medicina MolecularJoão Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisboaPortugal
| |
Collapse
|
42
|
Mendonça ADS, Silveira MM, Rios ÁFL, Mangiavacchi PM, Caetano AR, Dode MAN, Franco MM. DNA methylation and functional characterization of the XIST gene during in vitro early embryo development in cattle. Epigenetics 2019; 14:568-588. [PMID: 30925851 DOI: 10.1080/15592294.2019.1600828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
XIST, in association with the shorter ncRNA RepA, are essential for the initiation of X chromosome inactivation (XCI) in mice. The molecular mechanisms controlling XIST and RepA expression are well characterized in that specie. However, little is known in livestock. We aimed to characterize the DNA methylation status along the 5' portion of XIST and to characterize its transcriptional profile during early development in cattle. Three genomic regions of XIST named here as promoter, RepA and DMR1 had their DNA methylation status characterized in gametes and embryos. Expression profile of XIST was evaluated, including sense and antisense transcription. Oocytes showed higher levels of methylation than spermatozoa that was demethylated. DMR1 was hypermethylated throughout oogenesis. At the 8-16-cell embryo stage DMR1 was completed demethylated. Interestingly, RepA gain methylation during oocyte maturation and was demethylated at the blastocyst stage, later than DMR1. These results suggest that DMR1 and RepA are transient differentially methylated regions in cattle. XIST RNA was detected in matured oocytes and in single cells from the 2-cell to the morula stage, confirming the presence of maternal and embryonic transcripts. Sense and antisense transcripts were detected along the XIST in blastocyst. In silico analysis identified 63 novel transcript candidates at bovine XIST locus from both the plus and minus strands. Taking together these results improve our understanding of the molecular mechanisms involved in XCI initiation in cattle. This information may be useful for the improvement of assisted reproductive technologies in livestock considering that in vitro conditions may impair epigenetic reprogramming.
Collapse
Affiliation(s)
- Anelise Dos Santos Mendonça
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil.,c Federal Institute of Education, Science and Technology of Piauí , Uruçuí Campus , Portal dos Cerrados , Brazil
| | - Márcia Marques Silveira
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil
| | - Álvaro Fabrício Lopes Rios
- d Biotechnology Laboratory, Center of Biosciences and Biotechnology , North Fluminense State University , Campos dos Goytacazes , Brazil
| | - Paula Magnelli Mangiavacchi
- e Laboratory of Reproduction and Animal Genetic Improvement, Center for Agricultural Sciences and Technologies , North Fluminense State University , Campos dos Goytacazes , Brazil
| | - Alexandre Rodrigues Caetano
- f Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,g School of Agriculture and Veterinary Medicine , University of Brasília, Darcy Ribeiro Campus , Brasília , Brazil
| | - Margot Alves Nunes Dode
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,g School of Agriculture and Veterinary Medicine , University of Brasília, Darcy Ribeiro Campus , Brasília , Brazil
| | - Maurício Machaim Franco
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil.,h Faculty of Veterinary Medicine , Federal University of Uberlândia , Umuarama , Brazil
| |
Collapse
|
43
|
Abstract
Despite essential roles played by long noncoding RNAs (lncRNAs) in development and disease, methods to determine lncRNA cis-elements are lacking. Here, we developed a screening method named “Tiling CRISPR” to identify lncRNA functional domains. Using this approach, we identified Xist A-Repeats as the silencing domain, an observation in agreement with published work, suggesting Tiling CRISPR feasibility. Mechanistic analysis suggested a novel function for Xist A-repeats in promoting Xist transcription. Overall, our method allows mapping of lncRNA functional domains in an unbiased and potentially high-throughput manner to facilitate the understanding of lncRNA functions.
Collapse
|
44
|
Wang PY, Sexton AN, Culligan WJ, Simon MD. Carbodiimide reagents for the chemical probing of RNA structure in cells. RNA (NEW YORK, N.Y.) 2019; 25:135-146. [PMID: 30389828 PMCID: PMC6298570 DOI: 10.1261/rna.067561.118] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/18/2018] [Indexed: 05/09/2023]
Abstract
Deciphering the conformations of RNAs in their cellular environment allows identification of RNA elements with potentially functional roles within biological contexts. Insight into the conformation of RNA in cells has been achieved using chemical probes that were developed to react specifically with flexible RNA nucleotides, or the Watson-Crick face of single-stranded nucleotides. The most widely used probes are either selective SHAPE (2'-hydroxyl acylation and primer extension) reagents that probe nucleotide flexibility, or dimethyl sulfate (DMS), which probes the base-pairing at adenine and cytosine but is unable to interrogate guanine or uracil. The constitutively charged carbodiimide N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMC) is widely used for probing G and U nucleotides, but has not been established for probing RNA in cells. Here, we report the use of a smaller and conditionally charged reagent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), as a chemical probe of RNA conformation, and the first reagent validated for structure probing of unpaired G and U nucleotides in intact cells. We showed that EDC demonstrates similar reactivity to CMC when probing transcripts in vitro. We found that EDC specifically reacted with accessible nucleotides in the 7SK noncoding RNA in intact cells. We probed structured regions within the Xist lncRNA with EDC and integrated these data with DMS probing data. Together, EDC and DMS allowed us to refine predicted structure models for the 3' extension of repeat C within Xist. These results highlight how complementing DMS probing experiments with EDC allows the analysis of Watson-Crick base-pairing at all four nucleotides of RNAs in their cellular context.
Collapse
Affiliation(s)
- Peter Y Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Alec N Sexton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - William J Culligan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| |
Collapse
|
45
|
Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA Structures and Interactions by Sequencing-Based Approaches. Trends Biochem Sci 2018; 44:33-52. [PMID: 30459069 DOI: 10.1016/j.tibs.2018.09.012] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 11/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as significant players in almost every level of gene function and regulation. Thus, characterizing the structures and interactions of lncRNAs is essential for understanding their mechanistic roles in cells. Through a combination of (bio)chemical approaches and automated capillary and high-throughput sequencing (HTS), the complexity and diversity of RNA structures and interactions has been revealed in the transcriptomes of multiple species. These methods have uncovered important biological insights into the mechanistic and functional roles of lncRNA in gene expression and RNA metabolism, as well as in development and disease. In this review, we summarize the latest sequencing strategies to reveal RNA structure, RNA-RNA, RNA-DNA, and RNA-protein interactions, and highlight the recent applications of these approaches to map functional lncRNAs. We discuss the advantages and limitations of these strategies, and provide recommendations to further advance methodologies capable of mapping RNA structure and interactions in order to discover new biology of lncRNAs and decipher their molecular mechanisms and implication in diseases.
Collapse
Affiliation(s)
- Xingyang Qian
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; These authors contributed equally to this work
| | - Jieyu Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Pui Yan Yeung
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; These authors contributed equally to this work
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Chen X, Xie R, Gu P, Huang M, Han J, Dong W, Xie W, Wang B, He W, Zhong G, Chen Z, Huang J, Lin T. Long Noncoding RNA LBCS Inhibits Self-Renewal and Chemoresistance of Bladder Cancer Stem Cells through Epigenetic Silencing of SOX2. Clin Cancer Res 2018; 25:1389-1403. [PMID: 30397178 DOI: 10.1158/1078-0432.ccr-18-1656] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemoresistance and tumor relapse are the leading cause of deaths in bladder cancer patients. Bladder cancer stem cells (BCSCs) have been reported to contribute to these pathologic properties. However, the molecular mechanisms underlying their self-renewal and chemoresistance remain largely unknown. In the current study, a novel lncRNA termed Low expressed in Bladder Cancer Stem cells (lnc-LBCS) has been identified and explored in BCSCs. EXPERIMENTAL DESIGN Firstly, we establish BCSCs model and explore the BCSCs-associated lncRNAs by transcriptome microarray. The expression and clinical features of lnc-LBCS are analyzed in three independent large-scale cohorts. The functional role and mechanism of lnc-LBCS are further investigated by gain- and loss-of-function assays in vitro and in vivo. RESULTS Lnc-LBCS is significantly downregulated in BCSCs and cancer tissues, and correlates with tumor grade, chemotherapy response, and prognosis. Moreover, lnc-LBCS markedly inhibits self-renewal, chemoresistance, and tumor initiation of BCSCs both in vitro and in vivo. Mechanistically, lnc-LBCS directly binds to heterogeneous nuclear ribonucleoprotein K (hnRNPK) and enhancer of zeste homolog 2 (EZH2), and serves as a scaffold to induce the formation of this complex to repress SRY-box 2 (SOX2) transcription via mediating histone H3 lysine 27 tri-methylation. SOX2 is essential for self-renewal and chemoresistance of BCSCs, and correlates with the clinical severity and prognosis of bladder cancer patients. CONCLUSIONS As a novel regulator, lnc-LBCS plays an important tumor-suppressor role in BCSCs' self-renewal and chemoresistance, contributing to weak tumorigenesis and enhanced chemosensitivity. The lnc-LBCS-hnRNPK-EZH2-SOX2 regulatory axis may represent a therapeutic target for clinical intervention in chemoresistant bladder cancer.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyue Chen
- Department of Pediatric Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
47
|
Bevilacqua PC, Assmann SM. Technique Development for Probing RNA Structure In Vivo and Genome-Wide. Cold Spring Harb Perspect Biol 2018; 10:a032250. [PMID: 30275275 PMCID: PMC6169808 DOI: 10.1101/cshperspect.a032250] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
How organisms perceive and respond to their surroundings is one of the great questions in biology. It is clear that RNA plays key roles in sensing. Cellular and environmental cues that RNA responds to include temperature, ions, metabolites, and biopolymers. Recent advances in next-generation sequencing and in vivo chemical probing have provided unprecedented insights into RNA folding in vivo and genome-wide. Patterns of chemical reactivity have implicated control of gene expression by RNA and aided prediction of RNA structure. Central to these advances has been development of molecular biological and chemical techniques. Key advances are improvements in the quality, cost, and throughput of library preparation; availability of a wider array of chemicals for probing RNA structure in vivo; and robustness and user friendliness of data analysis. Insights from probing transcriptomes and future directions are provided.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Departments of Chemistry and Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
48
|
Gaiti F, Degnan BM, Tanurdžić M. Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biol 2018; 15:696-702. [PMID: 29616867 PMCID: PMC6152434 DOI: 10.1080/15476286.2018.1460166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023] Open
Abstract
How animals evolved from a single-celled ancestor over 700 million years ago is poorly understood. Recent transcriptomic and chromatin analyses in the sponge Amphimedon queenslandica, a morphologically-simple representative of one of the oldest animal phyletic lineages, have shed light on what innovations in the genome and its regulation underlie the emergence of animal multicellularity. Comparisons of the regulatory genome of this sponge with those of more complex bilaterian model species and even simpler unicellular relatives have revealed that fundamental changes in genome regulatory complexity accompanied the evolution of animal multicellularity. Here, we review and discuss the results of these recent investigations by specifically focusing on the contribution of long non-coding RNAs to the evolution of the animal regulatory genome.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
49
|
Lu Z, Carter AC, Chang HY. Mechanistic insights in X-chromosome inactivation. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0356. [PMID: 28947655 DOI: 10.1098/rstb.2016.0356] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is a critical epigenetic mechanism for balancing gene dosage between XY males and XX females in eutherian mammals. A long non-coding RNA (lncRNA), XIST, and its associated proteins orchestrate this multi-step process, resulting in the inheritable silencing of one of the two X-chromosomes in females. The XIST RNA is large and complex, exemplifying the unique challenges associated with the structural and functional analysis of lncRNAs. Recent technological advances in the analysis of macromolecular structure and interactions have enabled us to systematically dissect the XIST ribonucleoprotein complex, which is larger than the ribosome, and its place of action, the inactive X-chromosome. These studies shed light on key mechanisms of XCI, such as XIST coating of the X-chromosome, recruitment of DNA, RNA and histone modification enzymes, and compaction and compartmentalization of the inactive X. Here, we summarize recent studies on XCI, highlight the critical contributions of new technologies and propose a unifying model for XIST function in XCI where modular domains serve as the structural and functional units in both lncRNA-protein complexes and DNA-protein complexes in chromatin.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Zhipeng Lu
- Center for Dynamic Personal Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Ava C Carter
- Center for Dynamic Personal Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Dynamic Personal Regulomes, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Lin Y, Schmidt BF, Bruchez MP, McManus C. Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res 2018; 46:3742-3752. [PMID: 29394378 PMCID: PMC5909464 DOI: 10.1093/nar/gky046] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/20/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Paraspeckles are nuclear bodies that regulate multiple aspects of gene expression. The long non-coding RNA (lncRNA) NEAT1 is essential for paraspeckle formation. NEAT1 has a highly ordered spatial organization within the paraspeckle, such that its 5' and 3' ends localize on the periphery of paraspeckle, while central sequences of NEAT1 are found within the paraspeckle core. As such, the structure of NEAT1 RNA may be important as a scaffold for the paraspeckle. In this study, we used SHAPE probing and computational analyses to investigate the secondary structure of human and mouse NEAT1. We propose a secondary structural model of the shorter (3,735 nt) isoform hNEAT1_S, in which the RNA folds into four separate domains. The secondary structures of mouse and human NEAT1 are largely different, with the exception of several short regions that have high structural similarity. Long-range base-pairing interactions between the 5' and 3' ends of the long isoform NEAT1 (NEAT1_L) were predicted computationally and verified using an in vitro RNA-RNA interaction assay. These results suggest that the conserved role of NEAT1 as a paraspeckle scaffold does not require extensively conserved RNA secondary structure and that long-range interactions among NEAT1 transcripts may have an important architectural function in paraspeckle formation.
Collapse
Affiliation(s)
- Yizhu Lin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|