1
|
Liu X, Zhang B, Hua Y, Li C, Li X, Kong D. Nucleosomes represent a crucial target for the intra-S phase checkpoint in response to replication stress. SCIENCE ADVANCES 2025; 11:eadr3673. [PMID: 40378213 PMCID: PMC12083529 DOI: 10.1126/sciadv.adr3673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
The intra-S phase checkpoint is essential for stability of stalled DNA replication forks. However, the mechanisms underlying checkpoint regulation remain poorly understood. This study identifies a critical checkpoint target-the ubiquitin E3 ligase Brl2, revealing a new dimension of checkpoint regulation. Upon replication fork stalling, Brl2 undergoes phosphorylation at five serine residues by Cds1Chk2 kinase, resulting in the loss of its ligase activity and a marked reduction in H2BK119ub1 levels. In the brl2-5D (the five serine residues are replaced with aspartic acid) and htb-K119R mutants, chromatin becomes highly compacted. Furthermore, the rates of stalled replication fork collapse, and dsDNA breaks are significantly reduced in brl2-5D cds1Chk2∆ cells compared to cds1Chk2∆ cells. Thus, this study demonstrates that nucleosomes are targeted by the intra-S phase checkpoint and highlights the checkpoint's critical role in configuring compact chromatin structures at replication fork stalling sites. These findings may explain why ATR and Chk1 are essential for cell proliferation and embryonic development, while ATM is not.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Institute of Brain Science, College of Medicine, Shanxi Datong University, Datong 037009, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Hua
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanqi Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Xizhou Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Zhang H, Kapitonova E, Orrego A, Spanos C, Strachan J, Bayne EH. Fission yeast Caprin protein is required for efficient heterochromatin establishment. PLoS Genet 2025; 21:e1011620. [PMID: 40063661 PMCID: PMC11918387 DOI: 10.1371/journal.pgen.1011620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Heterochromatin is a key feature of eukaryotic genomes that serves important regulatory and structural roles in regions such as centromeres. In fission yeast, maintenance of existing heterochromatic domains relies on positive feedback loops involving histone methylation and non-coding RNAs. However, requirements for de novo establishment of heterochromatin are less well understood. Here, through a cross-based assay we have identified a novel factor influencing the efficiency of heterochromatin establishment. We determine that the previously uncharacterised protein is an ortholog of human Caprin1, an RNA-binding protein linked to stress granule formation. We confirm that the fission yeast ortholog, here named Cpn1, also associates with stress granules, and we uncover evidence of interplay between heterochromatin integrity and ribonucleoprotein (RNP) granule formation, with heterochromatin mutants showing reduced granule formation in the presence of stress, but increased granule formation in the absence of stress. We link this to regulation of non-coding heterochromatic transcripts, since in heterochromatin-deficient cells, Cpn1 can be seen to colocalise with accumulating pericentromeric transcripts, and absence of Cpn1 leads to hyperaccumulation of these RNAs at centromeres. Together, our findings unveil a novel link between RNP homeostasis and heterochromatin assembly, and implicate Cpn1 and associated factors in facilitating efficient heterochromatin establishment by enabling removal of excess transcripts that would otherwise impair assembly processes.
Collapse
Affiliation(s)
- Haidao Zhang
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ekaterina Kapitonova
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana Orrego
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christos Spanos
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Strachan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth H. Bayne
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Sweetalana, Nataneli S, Huang S, Mooney JA, Szpiech ZA. Genotypic and phenotypic consequences of domestication in dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592072. [PMID: 38746159 PMCID: PMC11092585 DOI: 10.1101/2024.05.01.592072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Runs of homozygosity (ROH) are genomic regions that arise when two copies of identical haplotypes are inherited from a shared common ancestor. In this study, we leverage ROH to identify associations between genetic diversity and non-disease phenotypes in Canis lupus familiaris (dogs). We find significant association between the ROH inbreeding coefficient (FROH) and several phenotypic traits. These traits include height, weight, lifespan, muscled, white coloring of the head and chest, furnishings, and fur length. After correcting for population structure, we identified more than 45 genes across the examined quantitative traits that exceed the threshold for suggestive significance. We observe distinct distributions of inbreeding and elevated levels of long ROH in modern breed dogs compared to more ancient breeds, which aligns with breeding practices during Victorian era breed establishment. Our results highlight the impact of non-additive variation and of polygenicity on complex quantitative phenotypes in dogs due to domestication and the breed formation bottleneck.
Collapse
Affiliation(s)
- Sweetalana
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Shirin Nataneli
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Shengmiao Huang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jazlyn A Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, USA
| |
Collapse
|
4
|
Niu K, Shi Y, Lv Q, Wang Y, Chen J, Zhang W, Feng K, Zhang Y. Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological mechanisms. J Transl Med 2023; 21:665. [PMID: 37752518 PMCID: PMC10521459 DOI: 10.1186/s12967-023-04540-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.
Collapse
Affiliation(s)
- Kaiyi Niu
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yanlong Shi
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Qingpeng Lv
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yizhu Wang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Jiping Chen
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Wenning Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Kung Feng
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yewei Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China.
| |
Collapse
|
5
|
Tang X, Sun F, Zhang N, Rana BB, Kharel R, Luo P, Si H. RNA-seq provides insights into potato deubiquitinase responses to drought stress in seedling stage. FRONTIERS IN PLANT SCIENCE 2023; 14:1268448. [PMID: 37780518 PMCID: PMC10539648 DOI: 10.3389/fpls.2023.1268448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Ubiquitination is a specific protein degradation and reversible post-translational modification process that can be reversed by deubiquitinase (DUBs). DUBs can hydrolyze and release ubiquitin in the substrate protein so that the substrate can avoid degradation or change its activity, and it has an impact on plant growth and development, cell cycle, abiotic stress response, and other biological processes. Transcript sequences of potato varieties "DM1-3", "Atlantic" and "Cooperation-88" downloaded from Potato Genome Resources were used for genome-wide identification of the DUB gene family using Hidden Markov Models and verified in the NCBI CD-Search tool. The characteristics of DUB genes from different potato varieties were analyzed including subcellular localization, gene structural motifs, phylogenetic tree, and sequence homology. Polyethylene glycol 6000 (PEG6000) induced drought stress transcriptome analysis was performed on the "Atlantic", and differentially expressed genes were screened, with emphasis on the characterization of deubiquitinase. DUB genes have a complex gene structure, often with a large number of exons and alternative splicing. Their promoters contain abundant abiotic stress-responsive elements, such as 425 MYC, 325 ABRE, and 320 MYB. There are also a large number of orthologous genes in the DUBs of the three potato varieties, and these genes are often clustered in similar regions on the genome. We performed transcriptome sequencing of the potato under PEG-induced drought stress and analyzed it for the first time using the Atlantic as a reference genome. We identified a total of 6067 down-regulated differentially expressed genes (DEGs) and 4950 up-regulated DEGs under PEG-induced drought stress. We screened the expression of DUBs and observed that 120 DUBs were up-regulated where most of them functioned in the nucleus, and the interacting proteins of DUBs were also localized in the nucleus. We have comprehensively identified and analyzed potato DUBs, and the accurately aligned transcriptome data which will further deepen the understanding of DUBs involved in the regulation of osmotic stress.
Collapse
Affiliation(s)
- Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fujun Sun
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Birendra Bahadur Rana
- Nepal Agricultural Research Council, National Potato Research Program, Lalitpur, Nepal
| | - Raju Kharel
- Department of Genetics and Plant Breeding, Agricultural and Forestry University, Chitwan, Nepal
| | - Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Noman M, Azizullah, Ahmed T, Gao Y, Wang H, Xiong X, Wang J, Lou J, Li D, Song F. Degradation of α-Subunits, Doa1 and Doa4, are Critical for Growth, Development, Programmed Cell Death Events, Stress Responses, and Pathogenicity in the Watermelon Fusarium Wilt Fungus Fusarium oxysporum f. sp. niveum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486296 DOI: 10.1021/acs.jafc.3c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The ubiquitin-proteasome system (UPS) regulates protein quality or control and plays essential roles in several biological and biochemical processes in fungi. Here, we present the characterization of two UPS components, FonDoa1 and FonDoa4, in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon), and their biological functions. FonDoa1 localizes in both the nucleus and cytoplasm, while FonDoa4 is predominantly present in the cytoplasm. Both genes show higher expression in germinating macroconidia at 12 h. Deletion of FonDoa1 or FonDoa4 affects vegetative growth, conidiation, conidial germination/morphology, apoptosis, and responses to environmental stressors. FonDoa1, but not FonDoa4, positively regulates autophagy. The targeted disruption mutants exhibit significantly attenuated pathogenicity on watermelon due to defects in the infection process and invasive fungal growth. Further results indicate that the WD40, PFU, and PUL domains are essential for the function of FonDoa1 in Fon pathogenicity and environmental stress responses. These findings demonstrate the previously uncharacterized biological functions of FonDoa1 and FonDoa4 in phytopathogenic fungi, providing potential targets for developing strategies to control watermelon Fusarium wilt.
Collapse
Affiliation(s)
- Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Azizullah
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Temoor Ahmed
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yizhou Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajun Lou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Andreadis C, Li T, Liu JL. Ubiquitination regulates cytoophidium assembly in Schizosaccharomyces pombe. Exp Cell Res 2022; 420:113337. [PMID: 36087798 DOI: 10.1016/j.yexcr.2022.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
CTP synthase (CTPS), a metabolic enzyme responsible for the de novo synthesis of CTP, can form filamentous structures termed cytoophidia, which are evolutionarily conserved from bacteria to humans. Here we used Schizosaccharomyces pombe to study the cytoophidium assembly regulation by ubiquitination. We tested the CTP synthase's capacity to be post-translationally modified by ubiquitin or be affected by the ubiquitination state of the cell and showed that ubiquitination is important for the maintenance of the CTPS filamentous structure in fission yeast. We have identified proteins which are in complex with CTPS, including specific ubiquitination regulators which significantly affect CTPS filamentation, and mapped probable ubiquitination targets on CTPS. Furthermore, we discovered that a cohort of deubiquitinating enzymes is important for the regulation of cytoophidium's filamentous morphology. Our study provides a framework for the analysis of the effects that ubiquitination and deubiquitination have on the formation of cytoophidia.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tianhao Li
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
8
|
Quantitative Assessment of Histone H2B Monoubiquitination in Yeast Using Immunoblotting. Methods Protoc 2022; 5:mps5050074. [PMID: 36287046 PMCID: PMC9609377 DOI: 10.3390/mps5050074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023] Open
Abstract
Studies in Saccharomyces cerevisiae and Schizosaccharomyces pombe have enhanced our understanding of the regulation and functions of histone H2B monoubiquitination (H2Bub1), a key epigenetic marker with important roles in transcription and other processes. The detection of H2Bub1 in yeasts using immunoblotting has been greatly facilitated by the commercial availability of antibodies against yeast histone H2B and the cross-reactivity of an antibody raised against monoubiquitinated human H2BK120. These antibodies have obviated the need to express epitope-tagged histone H2B to detect H2Bub1 in yeasts. Here, we provide a step-by-step protocol and best practices for the quantification of H2Bub1 in yeast systems, from cell extract preparation to immunoblotting using the commercially available antibodies. We demonstrate that the commercial antibodies can effectively and accurately detect H2Bub1 in S. cerevisiae and S. pombe. Further, we show that the C-terminal epitope-tagging of histone H2B alters the steady-state levels of H2Bub1 in yeast systems. We report a sectioned blot probing approach combined with the serial dilution of protein lysates and the use of reversibly stained proteins as loading controls that together provide a cost-effective and sensitive method for the quantitative evaluation of H2Bub1 in yeast.
Collapse
|
9
|
Anil AT, Choudhary K, Pandian R, Gupta P, Thakran P, Singh A, Sharma M, Mishra SK. Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2. Nucleic Acids Res 2022; 50:10000-10014. [PMID: 36095128 PMCID: PMC9508853 DOI: 10.1093/nar/gkac769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Intron diversity facilitates regulated gene expression and alternative splicing. Spliceosomes excise introns after recognizing their splicing signals: the 5'-splice site (5'ss), branchpoint (BP) and 3'-splice site (3'ss). The latter two signals are recognized by U2 small nuclear ribonucleoprotein (snRNP) and its accessory factors (U2AFs), but longer spacings between them result in weaker splicing. Here, we show that excision of introns with a BP-distant 3'ss (e.g. rap1 intron 2) requires the ubiquitin-fold-activated splicing regulator Sde2 in Schizosaccharomyces pombe. By monitoring splicing-specific ura4 reporters in a collection of S. pombe mutants, Cay1 and Tls1 were identified as additional regulators of this process. The role of Sde2, Cay1 and Tls1 was further confirmed by increasing BP-3'ss spacings in a canonical tho5 intron. We also examined BP-distant exons spliced independently of these factors and observed that RNA secondary structures possibly bridged the gap between the two signals. These proteins may guide the 3'ss towards the spliceosome's catalytic centre by folding the RNA between the BP and 3'ss. Orthologues of Sde2, Cay1 and Tls1, although missing in the intron-poor Saccharomyces cerevisiae, are present in intron-rich eukaryotes, including humans. This type of intron-specific pre-mRNA splicing appears to have evolved for regulated gene expression and alternative splicing of key heterochromatin factors.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Karan Choudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Praver Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Poonam Thakran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| |
Collapse
|
10
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
11
|
Involvement of Sec71 and Ubp2 in tunicamycin-induced ER stress response in the fission yeast. Mol Biol Rep 2022; 49:4719-4726. [PMID: 35474054 DOI: 10.1007/s11033-022-07321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Accumulation of unfolded or misfolded proteins in the cellular environment result in ER stress and activates the unfolded protein response (UPR). The UPR alleviates ER stress and restores homeostasis, but it triggers cell death under prolonged stress. Here, we aimed to investigate the involvement of Sec71, an Arf-GEF involved in vesicular transport, in the tunicamycin-induced ER stress response. Since deubiquitinases and ER stress are known to be closely linked, we investigated this response by evaluating the potential role of Ubp2, a deubiquitinase, in the ER stress response in fission yeast. METHODS AND RESULTS Tunicamycin-induced ER stress responses were assessed by analyzing cell viability, apoptosis, intracellular oxidation levels, and proteasomal activities in sec71 and ubp2-deficient cells. The cell viability of Δsec71 and Δubp2 decreased after exposure to 0.5 µg/mL tunicamycin. Deleting either ubp2 or sec71 genes significantly decreased proteasomal activity and sensitized cells to ER stress, resulting in increased apoptosis compared with wild-type cells after tunicamycin treatment. DCFDA (2,7-dichlorodihydrofluorescein diacetate) reduction increased in correlation with apoptosis observed in the mutant cells, indicating higher levels of reactive oxygen species. CONCLUSIONS The results highlight the involvement of S. pombe Ubp2 in the known role of the ubiquitin-proteasome system in the ER stress response. We hypothesise that Sec71 is associated with ER homeostasis, and our findings on Sec71 provide new insight into the regulation of cell death mechanisms arising from the ER stress.
Collapse
|
12
|
Tanaka M, Gomi K. Induction and Repression of Hydrolase Genes in Aspergillus oryzae. Front Microbiol 2021; 12:677603. [PMID: 34108952 PMCID: PMC8180590 DOI: 10.3389/fmicb.2021.677603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The filamentous fungus Aspergillus oryzae, also known as yellow koji mold, produces high levels of hydrolases such as amylolytic and proteolytic enzymes. This property of producing large amounts of hydrolases is one of the reasons why A. oryzae has been used in the production of traditional Japanese fermented foods and beverages. A wide variety of hydrolases produced by A. oryzae have been used in the food industry. The expression of hydrolase genes is induced by the presence of certain substrates, and various transcription factors that regulate such expression have been identified. In contrast, in the presence of glucose, the expression of the glycosyl hydrolase gene is generally repressed by carbon catabolite repression (CCR), which is mediated by the transcription factor CreA and ubiquitination/deubiquitination factors. In this review, we present the current knowledge on the regulation of hydrolase gene expression, including CCR, in A. oryzae.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Shizuoka, Japan
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Olazabal-Herrero A, Bilbao-Arribas M, Carlevaris O, Sendino M, Varela-Martinez E, Jugo BM, Berra E, Rodriguez JA. The dystrophia myotonica WD repeat-containing protein DMWD and WDR20 differentially regulate USP12 deubiquitinase. FEBS J 2021; 288:5943-5963. [PMID: 33844468 DOI: 10.1111/febs.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Despite its potential clinical relevance, the product of the DMWD (dystrophia myotonica, WD repeat containing) gene is a largely uncharacterized protein. The DMWD amino acid sequence is similar to that of WDR20, a known regulator of the USP12 and USP46 deubiquitinases (DUBs). Here, we apply a combination of in silico and experimental methods to investigate several aspects of DMWD biology. Molecular evolution and phylogenetic analyses reveal that WDR20 and DMWD, similar to USP12 and USP46, arose by duplication of a common ancestor during the whole genome duplication event in the vertebrate ancestor lineage. The analysis of public human gene expression datasets suggests that DMWD expression is positively correlated with USP12 expression in normal tissues and negatively correlated with WDR20 expression in tumors. Strikingly, a survey of the annotated interactome for DMWD and WDR20 reveals a largely nonoverlapping set of interactors for these proteins. Experimentally, we first confirmed that DMWD binds both USP12 and USP46 through direct coimmunoprecipitation of epitope-tagged proteins. We found that DMWD and WDR20 share the same binding interface in USP12, suggesting that their interaction with the DUB may be mutually exclusive. Finally, we show that both DMWD and WDR20 promote USP12 enzymatic activity, but they differentially modulate the subcellular localization of the DUB. Altogether, our findings suggest a model whereby mutually exclusive binding of DMWD and WDR20 to USP12 may lead to formation of deubiquitinase complexes with distinct subcellular localization, potentially targeting different substrate repertoires.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Onintza Carlevaris
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Edurne Berra
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERONC, Madrid, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
14
|
Zhan X, Zhao A, Wu B, Yang Y, Wan L, Tan P, Huang J, Lu Y. A novel compound heterozygous mutation of MYSM1 gene in a patient with bone marrow failure syndrome 4. Br J Biomed Sci 2021; 78:239-243. [PMID: 33618624 DOI: 10.1080/09674845.2021.1894706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- X Zhan
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - A Zhao
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - B Wu
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Yang
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Wan
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - P Tan
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Huang
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Lu
- Department of Childhood Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
The WD40-Repeat Protein WDR-20 and the Deubiquitinating Enzyme USP-46 Promote Cell Surface Levels of Glutamate Receptors. J Neurosci 2021; 41:3082-3093. [PMID: 33622778 DOI: 10.1523/jneurosci.1074-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Reversible modification of AMPA receptors (AMPARs) with ubiquitin regulates receptor levels at synapses and controls synaptic strength. The conserved deubiquitinating enzyme (DUB) ubiquitin-specific protease-46 (USP-46) removes ubiquitin from AMPARs and protects them from degradation in both Caenorhabditis elegans and mammals. Although DUBs are critical for diverse physiological processes, the mechanisms that regulate DUBs, especially in the nervous system, are not well understood. We and others previously showed that the WD40-repeat proteins WDR-48 and WDR-20 bind to and stimulate the catalytic activity of USP-46. Here, we identify an activity-dependent mechanism that regulates WDR-20 expression and show that WDR-20 works together with USP-46 and WDR-48 to promote surface levels of the C. elegans AMPAR GLR-1. usp-46, wdr-48, and wdr-20 loss-of-function mutants exhibit reduced levels of GLR-1 at the neuronal surface and corresponding defects in GLR-1-mediated behavior. Increased expression of WDR-20, but not WDR-48, is sufficient to increase GLR-1 surface levels in an usp-46-dependent manner. Loss of usp-46, wdr-48, and wdr-20 function reduces the rate of local GLR-1 insertion in neurites, whereas overexpression of wdr-20 is sufficient to increase the rate of GLR-1 insertion. Genetic manipulations that chronically reduce or increase glutamate signaling result in reciprocal alterations in wdr-20 transcription and homeostatic compensatory changes in surface GLR-1 levels that are dependent on wdr-20 This study identifies wdr-20 as a novel activity-regulated gene that couples chronic changes in synaptic activity with increased local insertion and surface levels of GLR-1 via the DUB USP-46.SIGNIFICANCE STATEMENT Deubiquitinating enzymes (DUBs) are critical regulators of synapse development and function; however, the regulatory mechanisms that control their various physiological functions are not well understood. This study identifies a novel role for the DUB ubiquitin-specific protease-46 (USP-46) and its associated regulatory protein WD40-repeat protein-20 (WDR-20) in regulating local insertion of glutamate receptors into the neuronal cell surface. This work also identifies WDR-20 as an activity-regulated gene that couples chronic changes in synaptic activity with homeostatic compensatory increases in surface levels of GLR-1 via USP-46. Given that 35% of USP family DUBs associate with WDR proteins, understanding the mechanisms by which WDR proteins regulate USP-46 could have implications for a large number of DUBs in other cell types.
Collapse
|
16
|
Eyboulet F, Jeronimo C, Côté J, Robert F. The deubiquitylase Ubp15 couples transcription to mRNA export. eLife 2020; 9:e61264. [PMID: 33226341 PMCID: PMC7682988 DOI: 10.7554/elife.61264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.
Collapse
Affiliation(s)
- Fanny Eyboulet
- Institut de recherches cliniques de MontréalMontréalCanada
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - Célia Jeronimo
- Institut de recherches cliniques de MontréalMontréalCanada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - François Robert
- Institut de recherches cliniques de MontréalMontréalCanada
- Département de Médecine, Faculté de Médecine, Université de MontréalMontréalCanada
| |
Collapse
|
17
|
Yang HJ, Asakawa H, Ohtsuki C, Haraguchi T, Hiraoka Y. Transient Breakage of the Nucleocytoplasmic Barrier Controls Spore Maturation via Mobilizing the Proteasome Subunit Rpn11 in the Fission Yeast Schizosaccharomyces pombe. J Fungi (Basel) 2020; 6:jof6040242. [PMID: 33113963 PMCID: PMC7712896 DOI: 10.3390/jof6040242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Forespore membrane (FSM) closure is a process of specialized cytokinesis in yeast meiosis. FSM closure begins with the contraction of the FSM opening and finishes with the disassembly of the leading-edge proteins (LEPs) from the FSM opening. Here, we show that the FSM opening starts to contract when the event of virtual nuclear envelope breakdown (vNEBD) occurs in anaphase II of the fission yeast Schizosaccharomyces pombe. The occurrence of vNEBD controls the redistribution of the proteasomal subunit Rpn11 from the nucleus to the cytosol. To investigate the importance of Rpn11 re-localization during vNEBD, Rpn11 was sequestered at the inner nuclear membrane by fusion with the transmembrane region of Bqt4 (Rpn11-GFP-INM). Remarkably, in the absence of endogenous rpn11+, the cells carrying Rpn11-GFP-INM had abnormal or no spore formation. Live-cell imaging analysis further reveals that the FSM opening failed to contract when vNEBD occurred, and the LEP Meu14 was persistently present at the FSM in the rpn11-gfp-INM cells. The results suggest that the dynamic localization of Rpn11 during vNEBD is essential for spore development.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence:
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; (H.A.); (C.O.); (T.H.); (Y.H.)
| |
Collapse
|
18
|
Proteomics-Based Identification of DUB Substrates Using Selective Inhibitors. Cell Chem Biol 2020; 28:78-87.e3. [PMID: 33007217 DOI: 10.1016/j.chembiol.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/16/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Deubiquitinating enzymes (DUBs) catalyze the removal of ubiquitin, thereby reversing the activity of E3 ubiquitin ligases and are central to the control of protein abundance and function. Despite the growing interest in DUBs as therapeutic targets, cellular functions for DUBs remain largely unknown and technical challenges often preclude the identification of DUB substrates in a comprehensive manner. Here, we demonstrate that treatment with potent DUB inhibitors coupled to mass spectrometry-based proteomics can identify DUB substrates at a proteome-wide scale. We applied this approach to USP7, a DUB widely investigated as a therapeutic target and identified many known substrates and additional targets. We demonstrate that USP7 substrates are enriched for DNA repair enzymes and E3 ubiquitin ligases. This work provides not only a comprehensive annotation of USP7 substrates, but a general protocol widely applicable to other DUBs, which is critical for translational development of DUB targeted agents.
Collapse
|
19
|
Hodul M, Ganji R, Dahlberg CL, Raman M, Juo P. The WD40-repeat protein WDR-48 promotes the stability of the deubiquitinating enzyme USP-46 by inhibiting its ubiquitination and degradation. J Biol Chem 2020; 295:11776-11788. [PMID: 32587090 DOI: 10.1074/jbc.ra120.014590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification that has emerged as a critical regulator of synapse development and function. However, the mechanisms that regulate the deubiquitinating enzymes (DUBs) responsible for the removal of ubiquitin from target proteins are poorly understood. We have previously shown that the DUB ubiquitin-specific protease 46 (USP-46) removes ubiquitin from the glutamate receptor GLR-1 and regulates its trafficking and degradation in Caenorhabditis elegans We found that the WD40-repeat proteins WDR-20 and WDR-48 bind and stimulate the catalytic activity of USP-46. Here, we identified another mechanism by which WDR-48 regulates USP-46. We found that increased expression of WDR-48, but not WDR-20, promotes USP-46 abundance in mammalian cells in culture and in C. elegans neurons in vivo Inhibition of the proteasome increased USP-46 abundance, and this effect was nonadditive with increased WDR-48 expression. We found that USP-46 is ubiquitinated and that expression of WDR-48 reduces the levels of ubiquitin-USP-46 conjugates and increases the t 1/2 of USP-46. A point-mutated WDR-48 variant that disrupts binding to USP-46 was unable to promote USP-46 abundance in vivo Finally, siRNA-mediated knockdown of wdr48 destabilizes USP46 in mammalian cells. Together, these results support a model in which WDR-48 binds and stabilizes USP-46 protein levels by preventing the ubiquitination and degradation of USP-46 in the proteasome. Given that a large number of USPs interact with WDR proteins, we propose that stabilization of DUBs by their interacting WDR proteins may be a conserved and widely used mechanism that controls DUB availability and function.
Collapse
Affiliation(s)
- Molly Hodul
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rakesh Ganji
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Caroline L Dahlberg
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Malavika Raman
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter Juo
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA .,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Nakagawa T, Okita AK. Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity. Curr Genet 2019; 65:1089-1098. [PMID: 30997531 DOI: 10.1007/s00294-019-00975-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/25/2022]
Abstract
The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.
Collapse
Affiliation(s)
- Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
21
|
Olazabal-Herrero A, Sendino M, Arganda-Carreras I, Rodríguez JA. WDR20 regulates shuttling of the USP12 deubiquitinase complex between the plasma membrane, cytoplasm and nucleus. Eur J Cell Biol 2019; 98:12-26. [PMID: 30466959 DOI: 10.1016/j.ejcb.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022] Open
Abstract
The human deubiquitinases USP12 and USP46 are very closely related paralogs with critical functions as tumor suppressors. The catalytic activity of these enzymes is regulated by two cofactors: UAF1 and WDR20. USP12 and USP46 show nearly 90% amino acid sequence identity and share some cellular activities, but have also evolved non-overlapping functions. We hypothesized that, correlating with their functional divergence, the subcellular localization of USP12 and USP46 might be differentially regulated by their cofactors. We used confocal and live microscopy analyses of epitope-tagged proteins to determine the effect of UAF1 and WDR20 on the localization of USP12 and USP46. We found that WDR20 differently modulated the localization of the DUBs, promoting recruitment of USP12, but not USP46, to the plasma membrane. Using site-directed mutagenesis, we generated a large set of USP12 and WDR20 mutants to characterize in detail the mechanisms and sequence determinants that modulate the subcellular localization of the USP12/UAF1/WDR20 complex. Our data suggest that the USP12/UAF1/WDR20 complex dynamically shuttles between the plasma membrane, cytoplasm and nucleus. This shuttling involved active nuclear export mediated by the CRM1 pathway, and required a short N-terminal motif (1MEIL4) in USP12, as well as a novel nuclear export sequence (450MDGAIASGVSKFATLSLHD468) in WDR20. In conclusion, USP12 and USP46 have evolved divergently in terms of cofactor binding-regulated subcellular localization. WDR20 plays a crucial role in as a "targeting subunit" that modulates CRM1-dependent shuttling of the USP12/UAF1/WDR20 complex between the plasma membrane, cytoplasm and nucleus.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Ignacio Arganda-Carreras
- Computer Science and Artificial Intelligence Department, University of the Basque Country (UPV/EHU), San Sebastian 20018, Spain; Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain; Donostia International Physics Center (DIPC), P. Manuel Lardizabal 4, 20018 San Sebastian, Spain
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain.
| |
Collapse
|
22
|
Mapa CE, Arsenault HE, Conti MM, Poti KE, Benanti JA. A balance of deubiquitinating enzymes controls cell cycle entry. Mol Biol Cell 2018; 29:2821-2834. [PMID: 30207830 PMCID: PMC6249862 DOI: 10.1091/mbc.e18-07-0425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein degradation during the cell cycle is controlled by the opposing activities of ubiquitin ligases and deubiquitinating enzymes (DUBs). Although the functions of ubiquitin ligases in the cell cycle have been studied extensively, the roles of DUBs in this process are less well understood. Here, we used an overexpression screen to examine the specificities of each of the 21 DUBs in budding yeast for 37 cell cycle-regulated proteins. We find that DUBs up-regulate specific subsets of proteins, with five DUBs regulating the greatest number of targets. Overexpression of Ubp10 had the largest effect, stabilizing 15 targets and delaying cells in mitosis. Importantly, UBP10 deletion decreased the stability of the cell cycle regulator Dbf4, delayed the G1/S transition, and slowed proliferation. Remarkably, deletion of UBP10 together with deletion of four additional DUBs restored proliferation to near-wild-type levels. Among this group, deletion of the proteasome-associated DUB Ubp6 alone reversed the G1/S delay and restored the stability of Ubp10 targets in ubp10Δ cells. Similarly, deletion of UBP14, another DUB that promotes proteasomal activity, rescued the proliferation defect in ubp10Δ cells. Our results suggest that DUBs function through a complex genetic network in which their activities are coordinated to facilitate accurate cell cycle progression.
Collapse
Affiliation(s)
- Claudine E Mapa
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Heather E Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michelle M Conti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Kristin E Poti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jennifer A Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
23
|
Jones CM, Chen JS, Johnson AE, Elmore ZC, Cullati SN, Beckley JR, Gould KL. Relief of the Dma1-mediated checkpoint requires Dma1 autoubiquitination and dynamic localization. Mol Biol Cell 2018; 29:2176-2189. [PMID: 29975113 PMCID: PMC6249794 DOI: 10.1091/mbc.e18-04-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome segregation and cell division are coupled to prevent aneuploidy and cell death. In the fission yeast Schizosaccharomyces pombe, the septation initiation network (SIN) promotes cytokinesis, but upon mitotic checkpoint activation, the SIN is actively inhibited to prevent cytokinesis from occurring before chromosomes have safely segregated. SIN inhibition during the mitotic checkpoint is mediated by the E3 ubiquitin ligase Dma1. Dma1 binds to the CK1-phosphorylated SIN scaffold protein Sid4 at the spindle pole body (SPB), and ubiquitinates it. Sid4 ubiquitination antagonizes the SPB localization of the Pololike kinase Plo1, the major SIN activator, so that SIN signaling is delayed. How this checkpoint is silenced once spindle defects are resolved has not been clear. Here we establish that Dma1 transiently leaves SPBs during anaphase B due to extensive autoubiquitination. The SIN is required for Dma1 to return to SPBs later in anaphase. Blocking Dma1 removal from SPBs by permanently tethering it to Sid4 prevents SIN activation and cytokinesis. Therefore, controlling Dma1’s SPB dynamics in anaphase is an essential step in S. pombe cell division and the silencing of the Dma1-dependent mitotic checkpoint.
Collapse
Affiliation(s)
- Christine M Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Zachary C Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sierra N Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
24
|
Schwerter D, Grimm I, Girzalsky W, Erdmann R. Receptor recognition by the peroxisomal AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p. J Biol Chem 2018; 293:15458-15470. [PMID: 30097517 DOI: 10.1074/jbc.ra118.003936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
The receptor cycle of type I peroxisomal matrix protein import is completed by ubiquitination of the membrane-bound peroxisome biogenesis factor 5 (Pex5p) and its subsequent export back to the cytosol. The receptor export is the only ATP-dependent step of the whole process and is facilitated by two members of the AAA family of proteins (ATPases associated with various cellular activities), namely Pex1p and Pex6p. To gain further insight into substrate recognition by the AAA complex, we generated an N-terminally linked ubiquitin-Pex5p fusion protein. This fusion protein displayed biological activity because it is able to functionally complement a PEX5-deletion in Saccharomyces cerevisiae. In vitro assays revealed its interaction at WT level with the native cargo protein Pcs60p and Pex14p, a constituent of the receptor docking complex. We also demonstrate in vitro deubiquitination by the deubiquitinating enzyme Ubp15p. In vitro pulldown assays and cross-linking studies demonstrate that Pex5p recognition by the AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p.
Collapse
Affiliation(s)
- Daniel Schwerter
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Immanuel Grimm
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Girzalsky
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
25
|
McClurg UL, Azizyan M, Dransfield DT, Namdev N, Chit NCTH, Nakjang S, Robson CN. The novel anti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostate cancer growth and survival. Oncotarget 2018; 9:24992-25007. [PMID: 29861848 PMCID: PMC5982776 DOI: 10.18632/oncotarget.25167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 12/26/2022] Open
Abstract
Metastatic castration resistant prostate cancer is one of the main causes of male cancer associated deaths worldwide. Development of resistance is inevitable in patients treated with anti-androgen therapies. This highlights a need for novel therapeutic strategies that would be aimed upstream of the androgen receptor (AR). Here we report that the novel small molecule anti-androgen, galeterone targets USP12 and USP46, two highly homologous deubiquitinating enzymes that control the AR-AKT-MDM2-P53 signalling pathway. Consequently, galeterone is effective in multiple models of prostate cancer including both castrate resistant and AR-negative prostate cancer. However, we have observed that USP12 and USP46 selectively regulate full length AR protein but not the AR variants. This is the first report of deubiquitinating enzyme targeting as a strategy in prostate cancer treatment which we show to be effective in multiple, currently incurable models of this disease.
Collapse
Affiliation(s)
- Urszula L McClurg
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahsa Azizyan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel T Dransfield
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA.,Current address: Siamab Therapeutics, Suite 100, Newton, MA 02458, USA
| | - Nivedita Namdev
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA
| | - Nay C T H Chit
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
26
|
Zukowski A, Johnson AM. The interplay of histone H2B ubiquitination with budding and fission yeast heterochromatin. Curr Genet 2018; 64:799-806. [PMID: 29464330 DOI: 10.1007/s00294-018-0812-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Mono-ubiquitinated histone H2B (H2B-Ub) is important for chromatin regulation of transcription, chromatin assembly, and also influences heterochromatin. In this review, we discuss the effects of H2B-Ub from nucleosome to higher-order chromatin structure. We then assess what is currently known of the role of H2B-Ub in heterochromatic silencing in budding and fission yeasts (S. cerevisiae and S. pombe), which have distinct silencing mechanisms. In budding yeast, the SIR complex initiates heterochromatin assembly with the aid of a H2B-Ub deubiquitinase, Ubp10. In fission yeast, the RNAi-dependent pathway initiates heterochromatin in the context of low H2B-Ub. We examine how the different silencing machineries overcome the challenge of H2B-Ub chromatin and highlight the importance of using these microorganisms to further our understanding of H2B-Ub in heterochromatic silencing pathways.
Collapse
Affiliation(s)
- Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
27
|
Wang DH, Song W, Wei SW, Zheng YF, Chen ZS, Han JD, Zhang HT, Luo JC, Qin YM, Xu ZH, Bai SN. Characterization of the Ubiquitin C-Terminal Hydrolase and Ubiquitin-Specific Protease Families in Rice ( Oryza sativa). FRONTIERS IN PLANT SCIENCE 2018; 9:1636. [PMID: 30498503 PMCID: PMC6249995 DOI: 10.3389/fpls.2018.01636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 05/11/2023]
Abstract
The ubiquitin C-terminal hydrolase (UCH) and ubiquitin-specific processing protease (UBP) protein families both function in protein deubiquitination, playing important roles in a wide range of biological processes in animals, fungi, and plants. Little is known about the functions of these proteins in rice (Oryza sativa), and the numbers of genes reported for these families have not been consistent between different rice database resources. To further explore their functions, it is necessary to first clarify the basic molecular and biochemical nature of these two gene families. Using a database similarity search, we clarified the numbers of genes in these two families in the rice genome, examined the enzyme activities of their corresponding proteins, and characterized the expression patterns of all OsUCH and representative OsUBP genes. Five OsUCH and 44 OsUBP genes were identified in the rice genome, with four OsUCH proteins and 10 of 16 tested representative OsUBP proteins showing enzymatic activities. Two OsUCHs and five OsUBPs were found to be preferentially expressed in the early development of rice stamens. This work thus lays down a reliable bioinformatic foundation for future investigations of genes in these two families, particularly for exploring their potential roles in rice stamen development.
Collapse
Affiliation(s)
- Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Wei Song
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Shao-Wei Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Ya-Feng Zheng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Jing-Dan Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong-Tao Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Jing-Chu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Yong-Mei Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, China
- National Center of Plant Gene Research, Beijing, China
- *Correspondence: Shu-Nong Bai,
| |
Collapse
|
28
|
Hodul M, Dahlberg CL, Juo P. Function of the Deubiquitinating Enzyme USP46 in the Nervous System and Its Regulation by WD40-Repeat Proteins. Front Synaptic Neurosci 2017; 9:16. [PMID: 29302259 PMCID: PMC5735123 DOI: 10.3389/fnsyn.2017.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin regulates synapse development and synaptic transmission. Much progress has been made investigating the role of ubiquitin ligases at the synapse, however very little is known about the deubiquitinating enzymes (DUBs) which remove ubiquitin from target proteins. Although there are far fewer DUBs than ubiquitin ligases encoded by the human genome, it is becoming clear that DUBs have very specific physiological functions, suggesting that DUB activity is tightly regulated in vivo. Many DUBs function as part of larger protein complexes, and multiple regulatory mechanisms exist to control the expression, localization and catalytic activity of DUBs. In this review article, we focus on the role of the DUB USP46 in the nervous system, and illustrate potential mechanisms of regulating DUBs by describing how USP46 is regulated by two WD40-repeat (WDR) proteins, WDR48/UAF1 and WDR20, based on recent structural studies and genetic analyses in vivo.
Collapse
Affiliation(s)
- Molly Hodul
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States.,Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| | - Caroline L Dahlberg
- Biology Department, Western Washington University, Bellingham, WA, United States
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
29
|
Thakran P, Pandit PA, Datta S, Kolathur KK, Pleiss JA, Mishra SK. Sde2 is an intron-specific pre-mRNA splicing regulator activated by ubiquitin-like processing. EMBO J 2017; 37:89-101. [PMID: 28947618 DOI: 10.15252/embj.201796751] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
The expression of intron-containing genes in eukaryotes requires generation of protein-coding messenger RNAs (mRNAs) via RNA splicing, whereby the spliceosome removes non-coding introns from pre-mRNAs and joins exons. Spliceosomes must ensure accurate removal of highly diverse introns. We show that Sde2 is a ubiquitin-fold-containing splicing regulator that supports splicing of selected pre-mRNAs in an intron-specific manner in Schizosaccharomyces pombe Both fission yeast and human Sde2 are translated as inactive precursor proteins harbouring the ubiquitin-fold domain linked through an invariant GGKGG motif to a C-terminal domain (referred to as Sde2-C). Precursor processing after the first di-glycine motif by the ubiquitin-specific proteases Ubp5 and Ubp15 generates a short-lived activated Sde2-C fragment with an N-terminal lysine residue, which subsequently gets incorporated into spliceosomes. Absence of Sde2 or defects in Sde2 activation both result in inefficient excision of selected introns from a subset of pre-mRNAs. Sde2 facilitates spliceosomal association of Cactin/Cay1, with a functional link between Sde2 and Cactin further supported by genetic interactions and pre-mRNA splicing assays. These findings suggest that ubiquitin-like processing of Sde2 into a short-lived activated form may function as a checkpoint to ensure proper splicing of certain pre-mRNAs in fission yeast.
Collapse
Affiliation(s)
- Poonam Thakran
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Prashant Arun Pandit
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Sumanjit Datta
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Kiran Kumar Kolathur
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shravan Kumar Mishra
- Max Planck - DST Partner Group, Department of Biological Sciences, Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| |
Collapse
|
30
|
Hovsepian J, Defenouillère Q, Albanèse V, Váchová L, Garcia C, Palková Z, Léon S. Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis. J Cell Biol 2017; 216:1811-1831. [PMID: 28468835 PMCID: PMC5461024 DOI: 10.1083/jcb.201610094] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/03/2017] [Accepted: 03/28/2017] [Indexed: 01/13/2023] Open
Abstract
Changes in nutrient availability trigger massive rearrangements of the yeast plasma membrane proteome. This work shows that the arrestin-related protein Csr2/Art8 is regulated by glucose signaling at multiple levels, allowing control of hexose transporter ubiquitylation and endocytosis upon glucose depletion. Nutrient availability controls the landscape of nutrient transporters present at the plasma membrane, notably by regulating their ubiquitylation and subsequent endocytosis. In yeast, this involves the Nedd4 ubiquitin ligase Rsp5 and arrestin-related trafficking adaptors (ARTs). ARTs are targeted by signaling pathways and warrant that cargo ubiquitylation and endocytosis appropriately respond to nutritional inputs. Here, we show that glucose deprivation regulates the ART protein Csr2/Art8 at multiple levels to trigger high-affinity glucose transporter endocytosis. Csr2 is transcriptionally induced in these conditions through the AMPK orthologue Snf1 and downstream transcriptional repressors. Upon synthesis, Csr2 becomes activated by ubiquitylation. In contrast, glucose replenishment induces CSR2 transcriptional shutdown and switches Csr2 to an inactive, deubiquitylated form. This glucose-induced deubiquitylation of Csr2 correlates with its phospho-dependent association with 14-3-3 proteins and involves protein kinase A. Thus, two glucose signaling pathways converge onto Csr2 to regulate hexose transporter endocytosis by glucose availability. These data illustrate novel mechanisms by which nutrients modulate ART activity and endocytosis.
Collapse
Affiliation(s)
- Junie Hovsepian
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Quentin Defenouillère
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Véronique Albanèse
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i. BIOCEV, 252 50 Vestec, Czech Republic.,Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Camille Garcia
- Proteomics Facility, Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
31
|
Clague MJ, Urbé S. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS J 2017; 284:1753-1766. [PMID: 28064438 PMCID: PMC5484354 DOI: 10.1111/febs.14007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
32
|
Materne P, Vázquez E, Sánchez M, Yague-Sanz C, Anandhakumar J, Migeot V, Antequera F, Hermand D. Histone H2B ubiquitylation represses gametogenesis by opposing RSC-dependent chromatin remodeling at the ste11 master regulator locus. eLife 2016; 5. [PMID: 27171419 PMCID: PMC4865366 DOI: 10.7554/elife.13500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/30/2016] [Indexed: 11/13/2022] Open
Abstract
In fission yeast, the ste11 gene encodes the master regulator initiating the switch from vegetative growth to gametogenesis. In a previous paper, we showed that the methylation of H3K4 and consequent promoter nucleosome deacetylation repress ste11 induction and cell differentiation (Materne et al., 2015) but the regulatory steps remain poorly understood. Here we report a genetic screen that highlighted H2B deubiquitylation and the RSC remodeling complex as activators of ste11 expression. Mechanistic analyses revealed more complex, opposite roles of H2Bubi at the promoter where it represses expression, and over the transcribed region where it sustains it. By promoting H3K4 methylation at the promoter, H2Bubi initiates the deacetylation process, which decreases chromatin remodeling by RSC. Upon induction, this process is reversed and efficient NDR (nucleosome depleted region) formation leads to high expression. Therefore, H2Bubi represses gametogenesis by opposing the recruitment of RSC at the promoter of the master regulator ste11 gene. DOI:http://dx.doi.org/10.7554/eLife.13500.001
Collapse
Affiliation(s)
- Philippe Materne
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | - Enrique Vázquez
- Instituto de Biología Funcional y Genómica, Salamanca, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, Salamanca, Spain
| | - Carlo Yague-Sanz
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | | | - Valerie Migeot
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | | | - Damien Hermand
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| |
Collapse
|
33
|
Orderly progression through S-phase requires dynamic ubiquitylation and deubiquitylation of PCNA. Sci Rep 2016; 6:25513. [PMID: 27151298 PMCID: PMC4858703 DOI: 10.1038/srep25513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Proliferating-cell nuclear antigen (PCNA) is a DNA sliding clamp with an essential function in DNA replication and a key role in tolerance to DNA damage by ensuring the bypass of lesions. In eukaryotes, DNA damage tolerance is regulated by ubiquitylation of lysine 164 of PCNA through a well-known control mechanism; however, the regulation of PCNA deubiquitylation remains poorly understood. Our work is a systematic and functional study on PCNA deubiquitylating enzymes (DUBs) in Schizosaccharomyces pombe. Our study reveals that the deubiquitylation of PCNA in fission yeast cells is a complex process that requires several ubiquitin proteases dedicated to the deubiquitylation of a specific subnuclear fraction of mono- and di-ubiquitylated PCNA or a particular type of poly-ubiquitylated PCNA and that there is little redundancy among these enzymes. To understand how DUB activity regulates the oscillatory pattern of ubiquitylated PCNA in fission yeast, we assembled multiple DUB mutants and found that a quadruple mutation of ubp2+, ubp12+, ubp15+, and ubp16+ leads to the stable accumulation of mono-, di-, and poly-ubiquitylated forms of PCNA, increases S-phase duration, and sensitizes cells to DNA damage. Our data suggest that the dynamic ubiquitylation and deubiquitylation of PCNA occurs during S-phase to ensure processive DNA replication.
Collapse
|
34
|
CRL4(Wdr70) regulates H2B monoubiquitination and facilitates Exo1-dependent resection. Nat Commun 2016; 7:11364. [PMID: 27098497 PMCID: PMC4844679 DOI: 10.1038/ncomms11364] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/18/2016] [Indexed: 01/16/2023] Open
Abstract
Double-strand breaks repaired by homologous recombination (HR) are first resected to form single-stranded DNA, which binds replication protein A (RPA). RPA attracts mediators that load the Rad51 filament to promote strand invasion, the defining feature of HR. How the resection machinery navigates nucleosome-packaged DNA is poorly understood. Here we report that in Schizosaccharomyces pombe a conserved DDB1-CUL4-associated factor (DCAF), Wdr70, is recruited to DSBs as part of the Cullin4-DDB1 ubiquitin ligase (CRL4(Wdr70)) and stimulates distal H2B lysine 119 mono-ubiquitination (uH2B). Wdr70 deletion, or uH2B loss, results in increased loading of the checkpoint adaptor and resection inhibitor Crb2(53BP1), decreased Exo1 association and delayed resection. Wdr70 is dispensable for resection upon Crb2(53BP1) loss, or when the Set9 methyltransferase that creates docking sites for Crb2 is deleted. Finally, we establish that this histone regulatory cascade similarly controls DSB resection in human cells.
Collapse
|
35
|
McClurg UL, Robson CN. Deubiquitinating enzymes as oncotargets. Oncotarget 2016; 6:9657-68. [PMID: 25962961 PMCID: PMC4496387 DOI: 10.18632/oncotarget.3922] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a complex process tightly regulated at multiple levels by post-translational modifications. Epigenetics plays a major role in cancer development, all stable changes to the gene expression process that are not a result of a direct change in the DNA code are described as epigenetics. Epigenetic processes are regulated by post-translational modifications including ubiquitination which can directly affect either histones or transcription factors or may target their co-factors and interacting partners exerting an indirect effect. Deubiquitination of these target proteins is equally important and alterations in this pathway can also lead to cancer development, progression and metastasis. Only the correct, unaltered balance between ubiquitination and deubiquitination ensures healthy cellular homeostasis. In this review we focus on the role of deubiquitinating (DUB) enzymes in various aspects of epigenetics including the regulation of transcription factors, histone modifications, DNA damage repair pathways and cell cycle regulation. We discuss the impact of those processes on tumourigenesis and potential therapeutic applications of DUBs for cancer treatment.
Collapse
Affiliation(s)
- Urszula L McClurg
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
USP2-45 Is a Circadian Clock Output Effector Regulating Calcium Absorption at the Post-Translational Level. PLoS One 2016; 11:e0145155. [PMID: 26756164 PMCID: PMC4710524 DOI: 10.1371/journal.pone.0145155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023] Open
Abstract
The mammalian circadian clock influences most aspects of physiology and behavior through the transcriptional control of a wide variety of genes, mostly in a tissue-specific manner. About 20 clock-controlled genes (CCGs) oscillate in virtually all mammalian tissues and are generally considered as core clock components. One of them is Ubiquitin-Specific Protease 2 (Usp2), whose status remains controversial, as it may be a cogwheel regulating the stability or activity of core cogwheels or an output effector. We report here that Usp2 is a clock output effector related to bodily Ca2+ homeostasis, a feature that is conserved across evolution. Drosophila with a whole-body knockdown of the orthologue of Usp2, CG14619 (dUsp2-kd), predominantly die during pupation but are rescued by dietary Ca2+ supplementation. Usp2-KO mice show hyperabsorption of dietary Ca2+ in small intestine, likely due to strong overexpression of the membrane scaffold protein NHERF4, a regulator of the Ca2+ channel TRPV6 mediating dietary Ca2+ uptake. In this tissue, USP2-45 is found in membrane fractions and negatively regulates NHERF4 protein abundance in a rhythmic manner at the protein level. In clock mutant animals (Cry1/Cry2-dKO), rhythmic USP2-45 expression is lost, as well as the one of NHERF4, confirming the inverse relationship between USP2-45 and NHERF4 protein levels. Finally, USP2-45 interacts in vitro with NHERF4 and endogenous Clathrin Heavy Chain. Taken together these data prompt us to define USP2-45 as the first clock output effector acting at the post-translational level at cell membranes and possibly regulating membrane permeability of Ca2+.
Collapse
|
37
|
Verna C, Sawchuk MG, Linh NM, Scarpella E. Control of vein network topology by auxin transport. BMC Biol 2015; 13:94. [PMID: 26560462 PMCID: PMC4641347 DOI: 10.1186/s12915-015-0208-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background Tissue networks such as the vascular networks of plant and animal organs transport signals and nutrients in most multicellular organisms. The transport function of tissue networks depends on topological features such as the number of networks’ components and the components’ connectedness; yet what controls tissue network topology is largely unknown, partly because of the difficulties in quantifying the effects of genes on tissue network topology. We address this problem for the vein networks of plant leaves by introducing biologically motivated descriptors of vein network topology; we combine these descriptors with cellular imaging and molecular genetic analysis; and we apply this combination of approaches to leaves of Arabidopsis thaliana that lack function of, overexpress or misexpress combinations of four PIN-FORMED (PIN) genes—PIN1, PIN5, PIN6, and PIN8—which encode transporters of the plant signal auxin and are known to control vein network geometry. Results We find that PIN1 inhibits vein formation and connection, and that PIN6 acts redundantly to PIN1 in these processes; however, the functions of PIN6 in vein formation are nonhomologous to those of PIN1, while the functions of PIN6 in vein connection are homologous to those of PIN1. We further find that PIN8 provides functions redundant and homologous to those of PIN6 in PIN1-dependent inhibition of vein formation, but that PIN8 has no functions in PIN1/PIN6-dependent inhibition of vein connection. Finally, we find that PIN5 promotes vein formation; that all the vein-formation-promoting functions of PIN5 are redundantly inhibited by PIN6 and PIN8; and that these functions of PIN5, PIN6, and PIN8 are independent of PIN1. Conclusions Our results suggest that PIN-mediated auxin transport controls the formation of veins and their connection into networks. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0208-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
38
|
Beckley JR, Chen JS, Yang Y, Peng J, Gould KL. A Degenerate Cohort of Yeast Membrane Trafficking DUBs Mediates Cell Polarity and Survival. Mol Cell Proteomics 2015; 14:3132-41. [PMID: 26412298 DOI: 10.1074/mcp.m115.050039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/26/2022] Open
Abstract
Deubiquitinating enzymes (DUBs), cysteine or metallo- proteases that cleave ubiquitin chains or protein conjugates, are present in nearly every cellular compartment, with overlapping protein domain structure, localization, and functions. We discovered a cohort of DUBs that are involved in membrane trafficking (ubp4, ubp5, ubp9, ubp15, and sst2) and found that loss of all five of these DUBs but not loss of any combination of four, significantly impacted cell viability in the fission yeast Schizosaccharomyces pombe (1). Here, we delineate the collective and individual functions and activities of these five conserved DUBs using comparative proteomics, biochemistry, and microscopy. We find these five DUBs are degenerate rather than redundant at the levels of cell morphology, substrate selectivity, ubiquitin chain specificity, and cell viability under stress. These studies reveal the complexity of interplay among these enzymes, providing a foundation for understanding DUB biology and providing another example of how cells utilize degeneracy to improve survival.
Collapse
Affiliation(s)
- Janel R Beckley
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| | - Jun-Song Chen
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| | - Yanling Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kathleen L Gould
- From the Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232
| |
Collapse
|
39
|
Ostapenko D, Burton JL, Solomon MJ. The Ubp15 deubiquitinase promotes timely entry into S phase in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2205-16. [PMID: 25877870 PMCID: PMC4462939 DOI: 10.1091/mbc.e14-09-1400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APC(Cdh1)-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.
Collapse
Affiliation(s)
- Denis Ostapenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Janet L Burton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Mark J Solomon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| |
Collapse
|
40
|
Clague MJ, Heride C, Urbé S. The demographics of the ubiquitin system. Trends Cell Biol 2015; 25:417-26. [PMID: 25906909 DOI: 10.1016/j.tcb.2015.03.002] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
The ubiquitin system is a major coordinator of cellular physiology through regulation of both protein degradation and signalling pathways. A key building block of a systems-level understanding has been generated by global proteomic studies, which provide copy number estimates for each component. The aggregate of ubiquitin, conjugating enzymes (E1, E2, and E3s), and deubiquitylases (DUBs) represents ∼1.3% of total cellular protein. Complementary approaches have generated quantitative measurements of various ubiquitin pools and further subdivision into different ubiquitin chain topologies. Systematic studies aimed at associating specific enzymes (E2s and DUBs) with the dynamics of these different pools have also made significant progress. Here, we delineate the emerging picture of the most significant determinants of the cellular ubiquitin economy.
Collapse
Affiliation(s)
- Michael J Clague
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | - Claire Heride
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sylvie Urbé
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
41
|
Kim SR, Kim JO, Lim KH, Yun JH, Han I, Baek KH. Regulation of pyruvate kinase isozyme M2 is mediated by the ubiquitin-specific protease 20. Int J Oncol 2015; 46:2116-24. [PMID: 25708858 DOI: 10.3892/ijo.2015.2901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/16/2015] [Indexed: 11/06/2022] Open
Abstract
USP20, one of deubiquitinating enzymes (DUBs) belonging to the subfamily of ubiquitin-specific protease (USP), regulates ubiquitin-mediated protein degradation. So far, USP20 has been identified as a binding protein and a regulator of hypoxia-inducible factor (HIF)-1α, β-adrenergic receptor, and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). In order to investigate other biological functions of USP20 with its novel substrates, we searched for putative substrates through two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. We found several putative substrates, some of which are related to cancer metabolism or neural disorders. Among these, the pyruvate kinase isoenzyme M2 (PKM2) had a high identity score. Most cancer cells contain a specific metabolic pathway, referred to as the Warburg effect. One well-known function of PKM2 is a main regulator in cancer metabolic pathways, and PKM2 promotes the Warburg effect and tumor growth. In addition, both PKM2 and HIF-1α upregulate the expression of target genes. From this evidence, it is expected that USP20 would be associated with the metabolic pathway through the regulation of PKM2 ubiquitination. Despite various roles of DUBs, the biological functions of USP20 in cellular mechanisms are poorly understood. Herein, we investigated the inter-action between PKM2 and USP20. Our results suggest a new molecular pathway in cancer metabolism through the regulation of PKM2.
Collapse
Affiliation(s)
- So-Ra Kim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jin-Ock Kim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Ji-Hyun Yun
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
42
|
Abstract
The proper folding of proteins is continuously challenged by intrinsic and extrinsic stresses, and the accumulation of toxic misfolded proteins is associated with many human diseases. Eukaryotic cells have evolved a complex network of protein quality control pathways to protect the proteome, and these pathways are specialized for each subcellular compartment. While many details have been elucidated for how the cytosol and endoplasmic reticulum counteract proteotoxic stress, relatively little is known about the pathways protecting the nucleus from protein misfolding. Proper maintenance of nuclear proteostasis has important implications in preserving genomic integrity, as well as for aging and disease. Here, we offer a conceptual framework for how proteostasis is maintained in this organelle. We define the particular requirements that must be considered for the nucleus to manage proteotoxic stress, summarize the known and implicated pathways of nuclear protein quality control, and identify the unresolved questions in the field.
Collapse
Affiliation(s)
- Yoko Shibata
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
43
|
Histone H2B ubiquitination promotes the function of the anaphase-promoting complex/cyclosome in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1529-38. [PMID: 24948786 PMCID: PMC4132182 DOI: 10.1534/g3.114.012625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitination and deubiquitination of proteins are reciprocal events involved in many cellular processes, including the cell cycle. During mitosis, the metaphase to anaphase transition is regulated by the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C). Although the E3 ubiquitin ligase function of the APC/C has been well characterized, it is not clear whether deubiquitinating enzymes (DUBs) play a role in reversing APC/C substrate ubiquitination. Here we performed a genetic screen to determine what DUB, if any, antagonizes the function of the APC/C in the fission yeast Schizosaccharomyces pombe. We found that deletion of ubp8, encoding the Spt-Ada-Gcn5-Acetyl transferase (SAGA) complex associated DUB, suppressed temperature-sensitive phenotypes of APC/C mutants cut9-665, lid1-6, cut4-533, and slp1-362. Our analysis revealed that Ubp8 antagonizes APC/C function in a mechanism independent of the spindle assembly checkpoint and proteasome activity. Notably, suppression of APC/C mutants was linked to loss of Ubp8 catalytic activity and required histone H2B ubiquitination. On the basis of these data, we conclude that Ubp8 antagonizes APC/C function indirectly by modulating H2B ubiquitination status.
Collapse
|
44
|
Dahlberg CL, Juo P. The WD40-repeat proteins WDR-20 and WDR-48 bind and activate the deubiquitinating enzyme USP-46 to promote the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of Caenorhabditis elegans. J Biol Chem 2013; 289:3444-56. [PMID: 24356955 DOI: 10.1074/jbc.m113.507541] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-mediated endocytosis and degradation of glutamate receptors controls their synaptic abundance and is implicated in modulating synaptic strength. The deubiquitinating enzymes (DUBs) that function in the nervous system are beginning to be defined, but the mechanisms that control DUB activity in vivo are understood poorly. We found previously that the DUB USP-46 deubiquitinates the Caenorhabditis elegans glutamate receptor GLR-1 and prevents its degradation in the lysosome. The WD40-repeat (WDR) proteins WDR20 and WDR48/UAF1 have been shown to bind to USP46 and stimulate its catalytic activity in other systems. Here we identify the C. elegans homologs of these WDR proteins and show that C. elegans WDR-20 and WDR-48 can bind and stimulate USP-46 catalytic activity in vitro. Overexpression of these activator proteins in vivo increases the abundance of GLR-1 in the ventral nerve cord, and this effect is further enhanced by coexpression of USP-46. Biochemical characterization indicates that this increase in GLR-1 abundance correlates with decreased levels of ubiquitin-GLR-1 conjugates, suggesting that WDR-20, WDR-48, and USP-46 function together to deubiquitinate and stabilize GLR-1 in neurons. Overexpression of WDR-20 and WDR-48 results in alterations in locomotion behavior consistent with increased glutamatergic signaling, and this effect is blocked in usp-46 loss-of-function mutants. Conversely, wdr-20 and wdr-48 loss-of-function mutants exhibit changes in locomotion behavior that are consistent with decreased glutamatergic signaling. We propose that WDR-20 and WDR-48 form a complex with USP-46 and stimulate the DUB to deubiquitinate and stabilize GLR-1 in vivo.
Collapse
Affiliation(s)
- Caroline L Dahlberg
- From the Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
45
|
Kim Y, Jo H, Lim CJ. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe. Can J Microbiol 2013; 59:789-96. [DOI: 10.1139/cjm-2013-0453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Schizosaccharomyces pombe sdu+ gene encoding a putative member of the PPPDE (Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes) superfamily was cloned into an Escherichia coli – yeast shuttle vector pRS316, resulting in the recombinant plasmid pYSTP. The determined nucleotide sequence carries 1207 bp, which would encode a protein of 201 amino acid residues. The S. pombe cells harboring pYSTP contained higher sdu1+ mRNA and deubiquitinating activity levels than the vector control cells, indicating that the sdu1+ gene is functioning. They exhibited a better growth in normal rich medium than the vector control cells. When shifted into the fresh medium containing hydrogen peroxide, menadione, or sodium nitroprusside, the S. pombe cells harboring pYSTP were able to grow reasonably well, while the growth of the vector control cells was arrested. The reactive oxygen species and total glutathione levels of the S. pombe cells harboring pYSTP were lower and higher than those of the vector control cells under the same stressful conditions, respectively. They exhibited a lower nitric oxide level than the vector control cells when subjected to sodium nitroprusside. Taken together, the sdu1+ gene encodes an actual protein having deubiquitinating activity and is involved in the response against oxidative and nitrosative stresses in S. pombe.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | - Hannah Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| |
Collapse
|
46
|
Abstract
In Schizosaccharomyces pombe, the septation initiation network (SIN) controls cytokinetic ring (CR) formation, maintenance, and constriction. Bohnert et al. identify Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation allows multimerization of a domain that confers F-actin bundling activity, which leads to persistent Cdc12 clustering, causing CRs to collapse when cytokinesis is delayed. These findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division. Many eukaryotes accomplish cell division by building and constricting a medial actomyosin-based cytokinetic ring (CR). In Schizosaccharomyces pombe, a Hippo-related signaling pathway termed the septation initiation network (SIN) controls CR formation, maintenance, and constriction. However, how the SIN regulates integral CR components was unknown. Here, we identify the essential cytokinetic formin Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation leads to persistent Cdc12 clustering, which prevents CR assembly in the absence of anillin-like Mid1 and causes CRs to collapse when cytokinesis is delayed. Molecularly, Sid2 phosphorylation of Cdc12 abrogates multimerization of a previously unrecognized Cdc12 domain that confers F-actin bundling activity. Taken together, our findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division.
Collapse
|
47
|
Burska UL, Harle VJ, Coffey K, Darby S, Ramsey H, O'Neill D, Logan IR, Gaughan L, Robson CN. Deubiquitinating enzyme Usp12 is a novel co-activator of the androgen receptor. J Biol Chem 2013; 288:32641-32650. [PMID: 24056413 DOI: 10.1074/jbc.m113.485912] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR), a member of the nuclear receptor family, is a transcription factor involved in prostate cell growth, homeostasis, and transformation. AR is a key protein in growth and development of both normal and malignant prostate, making it a common therapeutic target in prostate cancer. AR is regulated by an interplay of multiple post-translational modifications including ubiquitination. We and others have shown that the AR is ubiquitinated by a number of E3 ubiquitin ligases, including MDM2, CHIP, and NEDD4, which can result in its proteosomal degradation or enhanced transcriptional activity. As ubiquitination of AR causes a change in AR activity or stability and impacts both survival and growth of prostate cancer cells, deubiquitination of these sites has an equally important role. Hence, deubiquitinating enzymes could offer novel therapeutic targets. We performed an siRNA screen to identify deubiquitinating enzymes that regulate AR; in that screen ubiquitin-specific protease 12 (Usp12) was identified as a novel positive regulator of AR. Usp12 is a poorly characterized protein with few known functions and requires the interaction with two cofactors, Uaf-1 and WDR20, for its enzymatic activity. In this report we demonstrate that Usp12, in complex with Uaf-1 and WDR20, deubiquitinates the AR to enhance receptor stability and transcriptional activity. Our data show that Usp12 acts in a pro-proliferative manner by stabilizing AR and enhancing its cellular function.
Collapse
Affiliation(s)
- Urszula L Burska
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Victoria J Harle
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kelly Coffey
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Steven Darby
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Hollie Ramsey
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel O'Neill
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ian R Logan
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Luke Gaughan
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Craig N Robson
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
48
|
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 2013; 92:80-109. [PMID: 23603109 DOI: 10.1016/j.jprot.2013.03.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12840 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
49
|
Abstract
Ubiquitylation is a reversible post-translational modification that has emerged as a key regulator of most complex cellular processes. It may rival phosphorylation in scope and exceed it in complexity. The dynamic nature of ubiquitylation events is important for governing protein stability, maintaining ubiquitin homeostasis and controlling ubiquitin-dependent signalling pathways. The human genome encodes ~80 active deubiquitylating enzymes (DUBs, also referred to as deubiquitinases), which exhibit distinct specificity profiles towards the various ubiquitin chain topologies. As a result of their ability to reverse ubiquitylation, these enzymes control a broad range of key cellular processes. In this Commentary we discuss the cellular functions of DUBs, such as their role in governing membrane traffic and protein quality control. We highlight two key signalling pathways--the Wnt and transforming growth factor β (TGF-β) pathways, for which dynamic ubiquitylation has emerged as a key regulator. We also discuss the roles of DUBs in the nucleus, where they govern transcriptional activity and DNA repair pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, L69 3BX Liverpool, UK.
| | | | | |
Collapse
|
50
|
O'Donoghue JE, Bech-Otschir D, Larsen IB, Wallace M, Hartmann-Petersen R, Gordon C. Nedd8 processing enzymes in Schizosaccharomyces pombe. BMC BIOCHEMISTRY 2013; 14:8. [PMID: 23496905 PMCID: PMC3602023 DOI: 10.1186/1471-2091-14-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/08/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1. RESULTS Here we show that in the fission yeast, Schizosaccharomyces pombe, the Yuh1 orthologue, Uch1, is not the sole Nedd8 processing enzyme. Instead it appears that deubiquitylating enzymes can efficiently process the Nedd8 precursor in vivo. CONCLUSIONS Several enzymes contribute to Nedd8 precursor processing including a number of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Jean E O'Donoghue
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|