1
|
ten Tusscher KH. Computational modeling of plant root development: the art and the science. THE NEW PHYTOLOGIST 2025; 246:2446-2461. [PMID: 40269551 PMCID: PMC12095987 DOI: 10.1111/nph.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Plant root development, like any developmental process, arises from the interplay between processes like gene expression, cell-cell signaling, cell growth and division, and tissue mechanics, which unfold over a wide range of temporal and spatial scales. Computational models are uniquely suited to integrate these different processes and spatio-temporal scales to investigate how their interplay determines developmental outcomes and have become part of mainstream plant developmental research. Still, for non-modeling experts, it often remains unclear how models are built, why a particular modeling approach was chosen, and how to interpret and value model outcomes. This review attempts to explain the science behind the art of model building, illustrating the simplifications that are often made to keep models simple to understand and when these are and are not justified. Similarly, it discusses when it is safe to ignore certain processes like growth or tissue mechanics and when it is not. Additionally, this review discusses a range of major breakthrough modeling articles. Their approaches are linked to classical concepts and models in developmental biology like the French flag positional information gradient of Lewis Wolpert and the repetitive patterning mechanism proposed by Turing, in addition to highlighting the lessons they taught us on plant root development.
Collapse
Affiliation(s)
- Kirsten H. ten Tusscher
- Experimental and Computational Plant Development, IEB, Department of BiologyUtrecht UniversityWinthontlaan 30C3526 KVUtrechtthe Netherlands
- Theoretical Biology, IBB, Department of BiologyUtrecht UniversityWinthontlaan 30C3526 KVUtrechtthe Netherlands
| |
Collapse
|
2
|
Di Fino LM, Anjam MS, Besten M, Mentzelopoulou A, Papadakis V, Zahid N, Baez LA, Trozzi N, Majda M, Ma X, Hamann T, Sprakel J, Moschou PN, Smith RS, Marhavý P. Cellular damage triggers mechano-chemical control of cell wall dynamics and patterned cell divisions in plant healing. Dev Cell 2025; 60:1411-1422.e6. [PMID: 39809282 DOI: 10.1016/j.devcel.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/15/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Reactivation of cell division is crucial for the regeneration of damaged tissues, which is a fundamental process across all multicellular organisms. However, the mechanisms underlying the activation of cell division in plants during regeneration remain poorly understood. Here, we show that single-cell endodermal ablation generates a transient change in the local mechanical pressure on neighboring pericycle cells to activate patterned cell division that is crucial for tissue regeneration in Arabidopsis roots. Moreover, we provide strong evidence that this process relies on the phytohormone ethylene. Thus, our results highlight a previously unrecognized role of mechano-chemical control in patterned cell division during regeneration in plants.
Collapse
Affiliation(s)
- Luciano Martín Di Fino
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Muhammad Shahzad Anjam
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Maarten Besten
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Andriani Mentzelopoulou
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Department of Biology, University of Crete, Heraklion, Greece
| | - Vassilis Papadakis
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nageena Zahid
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
| | - Nicola Trozzi
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Xuemin Ma
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Peter Marhavý
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
3
|
Chu L, Schäfer CC, Matthes MS. Molecular mechanisms affected by boron deficiency in root and shoot meristems of plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1866-1878. [PMID: 39873407 PMCID: PMC12066120 DOI: 10.1093/jxb/eraf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
Boron deficiency is an abiotic stress that negatively impacts plant growth and yield worldwide. Boron deficiency primarily affects the development of plant meristems- stem cells critical for all post-embryonic tissue growth. The essential role of boron in meristem development was first established in 1923. It remains unclear whether boron directly integrates into meristem molecular signalling pathways. In addition to its stabilizing function in the primary cell wall, growing evidence suggests roles for boron in various molecular processes including phytohormone cascades. These indications enhance a mechanistic understanding of why boron is crucial for proper meristem development. In this review we compile and discuss molecular pathways influenced by boron availability in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), rice (Oryza sativa), and oilseed rape (Brassica napus) with a focus on the auxin-, ethylene-, and cytokinin-mediated hormone cascades. We particularly compare and contrast phenotypic and molecular adaptations of shoot and root meristems to boron deficiency and pinpoint tissue-specific differences.
Collapse
Affiliation(s)
- Liuyang Chu
- University of Bonn, Institute for Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Cay Christin Schäfer
- University of Bonn, Institute for Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Michaela S Matthes
- University of Bonn, Institute for Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| |
Collapse
|
4
|
Kumar V, Yadav S, Heymans A, Robert S. "Shape of Cell"-An Auxin and Cell Wall Duet. PHYSIOLOGIA PLANTARUM 2025; 177:e70294. [PMID: 40442876 PMCID: PMC12122918 DOI: 10.1111/ppl.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 06/02/2025]
Abstract
Understanding the mechanisms underlying cell shape acquisition is of fundamental importance in plant science, as this process ultimately defines the structure and function of plant organs. Plants produce cells of diverse shapes and sizes, including pavement cells and stomata of leaves, elongated epidermal cells of the hypocotyl, and cells with outgrowths such as root hairs, and so forth. Plant cells experience mechanical forces of variable magnitude during their development and interaction with neighboring cells and the surrounding environment. From the time of cytokinesis, they are encaged in a complex cell wall matrix, which offers mechanical support and enables directional growth and a differential rate of expansion towards adjacent cells via its mechanochemical heterogeneity. The phytohormone auxin is well characterized for its role in cell expansion and cell elasticity. The interaction between dynamic auxin redistribution and the mechanical properties of the cell wall within tissues drives the development of specific cell shapes. Here, we focus on the regulatory feedback loop involving auxin activity, its influence on cell wall chemistry and mechanical properties, and the coordination of cell shape formation. Integrating insights from molecular and cell biology, biophysics, and computational modeling, we explore the mechanistic link between auxin signaling and cell wall dynamics in shaping plant cells.
Collapse
Affiliation(s)
- Vinod Kumar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Adrien Heymans
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
5
|
Singh Yadav A, Hong L, Klees PM, Kiss A, Petit M, He X, Barrios IM, Heeney M, Galang AMD, Smith RS, Boudaoud A, Roeder AH. Growth directions and stiffness across cell layers determine whether tissues stay smooth or buckle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.22.549953. [PMID: 37546730 PMCID: PMC10401922 DOI: 10.1101/2023.07.22.549953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
From smooth shapes to buckles, nature exhibits organs of various shapes and forms. How cells grow to produce smooth shaped leaves and sepals remain unclear. Here, we show that growth along the longitudinal axis during early developmental stages and comparable stiffness across both epidermal layers of Arabidopsis sepals are essential for smoothness, as seen in the wild type. We identified a mutant (as2-7D) with ectopic expression of ASYMMETRIC LEAVES 2 (AS2) on the outer epidermis. Our analysis reveals that ectopic AS2 expression causes the outer epidermis of as2-7D sepals to buckle during early stages of sepal development. We show that buckling of the outer epidermis occurs due to conflicting cell growth directions and unequal tissue stiffness across the epidermal layers. Overexpression of cyclin-dependent kinase (CDK) inhibitor Kip-related protein 1 (KRP1) in as2-7D restores sepal smoothness by aligning the growth directions of the outer epidermal cells along the longitudinal axis, while also increasing the overall stiffness of the outer epidermis. Furthermore, buckling is associated with the convergence of auxin efflux transporter protein PIN-FORMED 1 (PIN1) to generate outgrowth in the sepals at later stages, suggesting that buckling can initiate outgrowths. Our findings suggest that in addition to molecular cues influencing tissue mechanics, tissue mechanics can also modulate molecular signals, giving rise to well-defined shapes.
Collapse
Affiliation(s)
- Avilash Singh Yadav
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lilan Hong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Patrick M. Klees
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Manuel Petit
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Xi He
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Iselle M. Barrios
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Michelle Heeney
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anabella Maria D. Galang
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | - Arezki Boudaoud
- LadHyX, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau Cedex, France
| | - Adrienne H.K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Ramos JRD, Reyes-Hernández BJ, Alim K, Maizel A. Auxin-mediated stress relaxation in pericycle and endoderm remodeling drives lateral root initiation. Biophys J 2025; 124:942-953. [PMID: 38902924 PMCID: PMC11947471 DOI: 10.1016/j.bpj.2024.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Plant development relies on the precise coordination of cell growth, which is influenced by the mechanical constraints imposed by rigid cell walls. The hormone auxin plays a crucial role in regulating this growth by altering the mechanical properties of cell walls. During the postembryonic formation of lateral roots, pericycle cells deep within the main root are triggered by auxin to resume growth and divide to form a new root. This growth involves a complex interplay between auxin, growth, and the resolution of mechanical conflicts with the overlying endodermis. However, the exact mechanisms by which this coordination is achieved are still unknown. Here, we propose a model that integrates tissue mechanics and auxin transport, revealing a connection between the auxin-induced relaxation of mechanical stress in the pericycle and auxin signaling in the endodermis. We show that the endodermis initially limits the growth of pericycle cells, resulting in a modest initial expansion. However, the associated stress relaxation is sufficient to redirect auxin to the overlying endodermis, which then actively accommodates the growth, allowing for the subsequent development of the lateral root. Our model uncovers that increased pericycle turgor and decreased endodermal resistance license expansion of the pericycle and how the topology of the endodermis influences the formation of the new root. These findings highlight the interconnected relationship between mechanics and auxin flow during lateral root initiation, emphasizing the vital role of the endodermis in shaping root development through mechanotransduction and auxin signaling.
Collapse
Affiliation(s)
- João R D Ramos
- Technical University of Munich, Munich, Germany; TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), Munich, Germany
| | | | - Karen Alim
- Technical University of Munich, Munich, Germany; TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), Munich, Germany.
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Jonsson K, Routier‐Kierzkowska A, Bhalerao RP. The asymmetry engine: how plants harness asymmetries to shape their bodies. THE NEW PHYTOLOGIST 2025; 245:2422-2427. [PMID: 39871733 PMCID: PMC11840410 DOI: 10.1111/nph.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
Plant development depends on growth asymmetry to establish body plans and adapt to environmental stimuli. We explore how plants initiate, propagate, and regulate organ-wide growth asymmetries. External cues, such as light and gravity, and internal signals, including stochastic cellular growth variability, drive these asymmetries. The plant hormone auxin orchestrates growth asymmetry through its distribution and transport. Mechanochemical feedback loops, exemplified by apical hook formation, further amplify growth asymmetries, illustrating the dynamic interplay between biochemical signals and physical forces. Growth asymmetry itself can serve as a continuous cue, influencing subsequent growth decisions. By examining specific cellular programs and their responses to asymmetric cues, we propose that the decision to either amplify or dampen these asymmetries is key to shaping plant organs.
Collapse
Affiliation(s)
- Kristoffer Jonsson
- Department of Biological Sciences, IRBVUniversity of Montreal4101 Sherbrooke EstMontrealQCH1X 2B2Canada
| | | | - Rishikesh P. Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| |
Collapse
|
8
|
Salvi E, Moyroud E. Building beauty: Understanding how hormone signaling regulates petal patterning and morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70101. [PMID: 40106266 PMCID: PMC11922171 DOI: 10.1111/tpj.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The corolla of flowering plants provides pivotal functions for the reproduction of angiosperms, directly impacting the fitness of individuals. Different petal shapes and patterns contribute to these functions and, thus, participate in the production of morphological diversity and the emergence of new species. During petal morphogenesis, the coordination of cell fate specification, cell division, and cell expansion is coherent and robust across the petal blade and is set according to proximo-distal, medio-lateral, and abaxial-adaxial axes. However, the mechanisms specifying petal polarity and controlling cell behavior in a position-dependent manner as petals develop remain poorly understood. In this review, we draw parallels with other evolutionarily related plant lateral organs such as leaves to argue that hormones likely play central, yet largely unexplored, roles in such coordination. By examining petal development in Arabidopsis and other angiosperms, we frame what are the knowns and the unknowns of hormones contributions to petal morphogenesis and patterning. Finally, we argue that using emerging model organisms can provide invaluable information to tackle questions that have long remained unanswered, broadening our understanding by allowing us to investigate petal morphogenesis and the tinkering of phytohormone signaling through an evolutionary lens.
Collapse
Affiliation(s)
- Elena Salvi
- The Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
- Department of BiologyUniversity of PisaVia Luca Ghini 13Pisa56126Italy
| | - Edwige Moyroud
- The Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
| |
Collapse
|
9
|
Walia A, Carter R, Wightman R, Meyerowitz EM, Jönsson H, Jones AM. Differential growth is an emergent property of mechanochemical feedback mechanisms in curved plant organs. Dev Cell 2024; 59:3245-3258.e3. [PMID: 39378877 DOI: 10.1016/j.devcel.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Differential growth is central to eukaryotic morphogenesis. We showed using cellular imaging, simulations, and perturbations that light-induced differential growth in a curved organ, the Arabidopsis thaliana apical hook, emerges from the longitudinal expansion of subepidermal cells, acting in parallel with a differential in the material properties of epidermal cell walls that resist expansion. The greater expansion of inner hook cells that results in apical hook opening is gated by wall alkalinity and auxin, both of which are depleted upon illumination. We further identified mechanochemical feedback from wall mechanics to light stimulated auxin depletion, which may contribute to gating hook opening under mechanical restraint. These results highlight how plant cells coordinate growth among tissue layers by linking mechanics and hormonal gradients with the cell wall remodeling required for differential growth.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Elliot M Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK; Centre for Environmental and Climate Science, Lund University, 223 62 Lund, Sweden.
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| |
Collapse
|
10
|
Höfler M, Liu X, Greb T, Alim K. Mechanical forces instruct division plane orientation of cambium stem cells during radial growth in Arabidopsis thaliana. Curr Biol 2024; 34:5518-5531.e4. [PMID: 39571578 DOI: 10.1016/j.cub.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024]
Abstract
Robust regulation of cell division is central to the formation of complex multi-cellular organisms and is a hallmark of stem cell activity. In plants, due to the absence of cell migration, the correct placement of newly produced cell walls during cell division is of eminent importance for generating functional tissues and organs. In particular, during the radial growth of plant shoots and roots, precise regulation and organization of cell divisions in the cambium are essential to produce adjacent xylem and phloem tissues in a strictly bidirectional manner. Although several intercellular signaling cascades have been identified to instruct tissue organization during radial growth, the role of mechanical forces in guiding cambium stem cell activity has been frequently proposed but, so far, not been functionally investigated on the cellular level. Here, we coupled anatomical analyses with a cell-based vertex model to analyze the role of mechanical stress in radial plant growth at the cell and tissue scale. Simulations based on segmented cellular outlines of radially growing Arabidopsis hypocotyls revealed a distinct stress pattern with circumferential stresses in cambium stem cells, which coincided with the orientation of cortical microtubules. Integrating stress patterns as a cue instructing cell division orientation was sufficient for the emergence of typical cambium-derived cell files and agreed with experimental results for stress-related tissue organization in confining mechanical environments. Our work thus underlines the significance of mechanical forces in tissue organization through self-emerging stress patterns during the growth of plant organs.
Collapse
Affiliation(s)
- Mathias Höfler
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), 85748 Garching b. München, Munich, Germany
| | - Xiaomin Liu
- Heidelberg University, Centre for Organismal Studies (COS), 69120 Heidelberg, Germany
| | - Thomas Greb
- Heidelberg University, Centre for Organismal Studies (COS), 69120 Heidelberg, Germany
| | - Karen Alim
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), 85748 Garching b. München, Munich, Germany.
| |
Collapse
|
11
|
Zhang Y, Sun HR, Hu ZC, Dong Y. Cellular mechanism of polarized auxin transport on fruit shape determination revealed by time-lapse live imaging. PLANT REPRODUCTION 2024; 38:1. [PMID: 39570478 DOI: 10.1007/s00497-024-00513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
KEY MESSAGE Polarized auxin transport regulates fruit shape determination by promoting anisotropic cell growth. Angiosperms produce organs with distinct shape resultant from adaptive evolution. Understanding the cellular basis underlying the development of plant organ has been a central topic in plant biology as it is key to unlock the mechanisms leading to the diversification of plants. Variations in the location of synthesis, polarized auxin transport (PAT) have been proposed to account for the development of diverse organ shapes, but the exact cellular mechanism has yet to be elucidated. The Capsella rubella develops a perfect heart-shaped fruit from an ovate shape gynoecium that is tightly linked to the localized auxin synthesis in the valve tips and provides a unique opportunity to address this question. In this study, we studied auxin movement in the fruits and the cellular effect of N-1-Naphthylphthalamic Acid (NPA) on the fruit shape determination by constructing the pCrPIN3:PIN3:GFP reporter and live-imaging. We found PAT in the valve epidermis is in congruent with fruit shape development and NPA treatment disrupts the heat-shaped fruit development mainly by repressing cell anisotropic growth with minor effect on division. As the Capsella fruit is unusually big in size, we also included a detailed step-by-step protocol on how to conduct live-imaging experiment. We further test the utility of this protocol by conducting a live-imaging analysis of the gynophore in Arachis hypogaea. Collectively, the results of this study elucidated the mechanism on how auxin signal was translated into instructions guiding cell growth during organ shape determination. In addition, the description of the detailed live-imaging protocol will encourage further studies of the cellular mechanisms underlying shape diversification in angiosperms.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao-Ran Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Cheng Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Dong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Hajný J, Trávníčková T, Špundová M, Roenspies M, Rony RMIK, Sacharowski S, Krzyszton M, Zalabák D, Hardtke CS, Pečinka A, Puchta H, Swiezewski S, van Norman JM, Novák O. Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA. MOLECULAR PLANT 2024; 17:1719-1732. [PMID: 39354717 DOI: 10.1016/j.molp.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA-CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology.
Collapse
Affiliation(s)
- Jakub Hajný
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic.
| | - Tereza Trávníčková
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Michelle Roenspies
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)-Molecular Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - R M Imtiaz Karim Rony
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Sebastian Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - David Zalabák
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleš Pečinka
- Center of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)-Molecular Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jaimie M van Norman
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ondřej Novák
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany and Palacky University, Slechtitelu 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
13
|
Norton MM, Grover P. Mechanochemical topological defects in an active nematic. Phys Rev E 2024; 110:054605. [PMID: 39690574 DOI: 10.1103/physreve.110.054605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 12/19/2024]
Abstract
We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials. We demonstrate the ability of this system to identify defects in both passive and active nematics. Our results illustrate that a relatively simple feedback scheme, expressed as a system of partial differential equations, is capable of producing chemical signals in response to inherently nonlocal structures in anisotropic media. We posit that such coarse-grained systems can help generate testable hypotheses for regulated processes in biological systems, such as morphogenesis, and motivate the creation of bio-inspired materials that utilize dynamic coupling between nematic structure and biochemistry.
Collapse
|
14
|
Rusnak B, Clark FK, Vadde BVL, Roeder AHK. What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated. Annu Rev Cell Dev Biol 2024; 40:301-328. [PMID: 38724025 DOI: 10.1146/annurev-cellbio-111323-102412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
One of the fundamental questions in developmental biology is how a cell is specified to differentiate as a specialized cell type. Traditionally, plant cell types were defined based on their function, location, morphology, and lineage. Currently, in the age of single-cell biology, researchers typically attempt to assign plant cells to cell types by clustering them based on their transcriptomes. However, because cells are dynamic entities that progress through the cell cycle and respond to signals, the transcriptome also reflects the state of the cell at a particular moment in time, raising questions about how to define a cell type. We suggest that these complexities and dynamics of cell states are of interest and further consider the roles signaling, stochasticity, cell cycle, and mechanical forces play in plant cell fate specification. Once established, cell identity must also be maintained. With the wealth of single-cell data coming out, the field is poised to elucidate both the complexity and dynamics of cell states.
Collapse
Affiliation(s)
- Byron Rusnak
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Frances K Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Batthula Vijaya Lakshmi Vadde
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA;
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| |
Collapse
|
15
|
Saltini M, Deinum EE. Microtubule simulations in plant biology: A field coming to maturity. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102596. [PMID: 38981324 DOI: 10.1016/j.pbi.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
The plant cortical microtubule array is an important determinant of cell wall structure and, therefore, plant morphology and physiology. The array consists of dynamic microtubules interacting through frequent collisions. Since the discovery by Dixit and Cyr (2004) that the outcome of such collisions depends on the collision angle, computer simulations have been indispensable in studying array behaviour. Over the last decade, the available simulation tools have drastically improved: multiple high-quality simulation platforms exist with specific strengths and applications. Here, we review how these platforms differ on the critical aspects of microtubule nucleation, flexibility, and local orienting cues; and how such differences affect array behaviour. Building upon concepts and control parameters from theoretical models of collective microtubule behaviour, we conclude that all these factors matter in the debate about what is most important for orienting the array: local cues like mechanical stresses or global cues deriving from the cell geometry.
Collapse
Affiliation(s)
- Marco Saltini
- Mathematical & Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Eva E Deinum
- Mathematical & Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
16
|
Iwamoto A, Yoshioka Y, Nakamura R, Yajima T, Inoue W, Nagakura K. Mechanical forces exerted on floral primordia with a novel experimental system modify floral development in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:763-771. [PMID: 38992325 DOI: 10.1007/s10265-024-01557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Mechanical forces play a crucial role in plant development, including floral development. We previously reported that the phyllotactic variation in the staminate flowers of Ceratophyllum demersum may be caused by mechanical forces on the adaxial side of floral primordia, which may be a common mechanism in angiosperms. On the basis of this result, we developed a novel experimental system for analysis of the effects of mechanical forces on the floral meristem of Arabidopsis thaliana, aiming to induce morphological changes in flowers. In this experimental system, a micromanipulator equipped with a micro device, which is shaped to conform with the contour of the abaxial side of the young floral primordium, is used to exert contact pressure on a floral primordium. In the present study, we conducted contact experiments using this system and successfully induced diverse morphological changes during floral primordial development. In several primordia, the tip of the abaxial sepal primordium was incised with two or three lobes. A different floral primordium developed an additional sepal on the abaxial side (i.e., two abaxial sepals). Additionally, we observed the fusion of sepals in some floral primordia. These results suggest that mechanical forces have multiple effects on floral development, and changes in the tensile stress pattern in the cells of floral primordia are induced by the mechanical forces exerted with the micro device. These effects, in turn, lead to morphological changes in the floral primordia.
Collapse
Affiliation(s)
- Akitoshi Iwamoto
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan.
| | - Yuna Yoshioka
- Department of Biology, Tokyo Gakugei University, Koganei, Japan
| | - Ryoka Nakamura
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| | - Takeshi Yajima
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| | - Wakana Inoue
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| | - Kaho Nagakura
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| |
Collapse
|
17
|
Alonso-Serra J, Cheddadi I, Kiss A, Cerutti G, Lang M, Dieudonné S, Lionnet C, Godin C, Hamant O. Water fluxes pattern growth and identity in shoot meristems. Nat Commun 2024; 15:6944. [PMID: 39138210 PMCID: PMC11322635 DOI: 10.1038/s41467-024-51099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.
Collapse
Affiliation(s)
- Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Ibrahim Cheddadi
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Annamaria Kiss
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Guillaume Cerutti
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Marianne Lang
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Sana Dieudonné
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Claire Lionnet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
18
|
Kong S, Zhu M, Pan D, Lane B, Smith RS, Roeder AHK. Tradeoff between speed and robustness in primordium initiation mediated by auxin-CUC1 interaction. Nat Commun 2024; 15:5911. [PMID: 39003301 PMCID: PMC11246466 DOI: 10.1038/s41467-024-50172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Robustness is the reproducible development of a phenotype despite stochastic noise. It often involves tradeoffs with other performance metrics, but the mechanisms underlying such tradeoffs were largely unknown. An Arabidopsis flower robustly develops four sepals from four precisely positioned auxin maxima. The development related myb-like 1 (drmy1) mutant generates noise in auxin signaling that disrupts robustness in sepal initiation. Here, we find that increased expression of CUP-SHAPED COTYLEDON1 (CUC1), a boundary specification transcription factor, in drmy1 underlies this loss of robustness. CUC1 surrounds and amplifies stochastic auxin noise in drmy1 to form variably positioned auxin maxima and sepal primordia. Removing CUC1 from drmy1 provides time for noisy auxin signaling to resolve into four precisely positioned auxin maxima, restoring robust sepal initiation. However, removing CUC1 decreases the intensity of auxin maxima and slows down sepal initiation. Thus, CUC1 increases morphogenesis speed but impairs robustness against auxin noise. Further, using a computational model, we find that the observed phenotype can be explained by the effect of CUC1 in repolarizing PIN FORMED1 (PIN1), a polar auxin transporter. Lastly, our model predicts that reducing global growth rate improves developmental robustness, which we validate experimentally. Thus, our study illustrates a tradeoff between speed and robustness during development.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Brendan Lane
- Department of Computational and Systems Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Demesa-Arevalo E, Narasimhan M, Simon R. Intercellular Communication in Shoot Meristems. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:319-344. [PMID: 38424066 DOI: 10.1146/annurev-arplant-070523-035342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The shoot meristem of land plants maintains the capacity for organ generation throughout its lifespan due to a group of undifferentiated stem cells. Most meristems are shaped like a dome with a precise spatial arrangement of functional domains, and, within and between these domains, cells interact through a network of interconnected signaling pathways. Intercellular communication in meristems is mediated by mobile transcription factors, small RNAs, hormones, and secreted peptides that are perceived by membrane-localized receptors. In recent years, we have gained deeper insight into the underlying molecular processes of the shoot meristem, and we discuss here how plants integrate internal and external inputs to control shoot meristem activities.
Collapse
Affiliation(s)
- Edgar Demesa-Arevalo
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany;
| |
Collapse
|
20
|
Bauer A, Ali O, Bied C, Bœuf S, Bovio S, Delattre A, Ingram G, Golz JF, Landrein B. Spatiotemporally distinct responses to mechanical forces shape the developing seed of Arabidopsis. EMBO J 2024; 43:2733-2758. [PMID: 38831122 PMCID: PMC11217287 DOI: 10.1038/s44318-024-00138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Organ morphogenesis depends on mechanical interactions between cells and tissues. These interactions generate forces that can be sensed by cells and affect key cellular processes. However, how mechanical forces, together with biochemical signals, contribute to the shaping of complex organs is still largely unclear. We address this question using the seed of Arabidopsis as a model system. We show that seeds first experience a phase of rapid anisotropic growth that is dependent on the response of cortical microtubule (CMT) to forces, which guide cellulose deposition according to shape-driven stresses in the outermost layer of the seed coat. However, at later stages of development, we show that seed growth is isotropic and depends on the properties of an inner layer of the seed coat that stiffens its walls in response to tension but has isotropic material properties. Finally, we show that the transition from anisotropic to isotropic growth is due to the dampening of cortical microtubule responses to shape-driven stresses. Altogether, our work supports a model in which spatiotemporally distinct mechanical responses control the shape of developing seeds in Arabidopsis.
Collapse
Affiliation(s)
- Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - Olivier Ali
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Camille Bied
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Sophie Bœuf
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
- Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, SFR Biosciences, Lyon, 69007, France
| | - Adrien Delattre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
21
|
Hu ZL, Wilson-Sánchez D, Bhatia N, Rast-Somssich MI, Wu A, Vlad D, McGuire L, Nikolov LA, Laufs P, Gan X, Laurent S, Runions A, Tsiantis M. A CUC1/auxin genetic module links cell polarity to patterned tissue growth and leaf shape diversity in crucifer plants. Proc Natl Acad Sci U S A 2024; 121:e2321877121. [PMID: 38905239 PMCID: PMC11214078 DOI: 10.1073/pnas.2321877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
How tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in C. hirsuta (ChCUC1) is a key determinant of leaf shape differences between the two species. Through inducible genetic perturbations, time-lapse imaging of growth, and computational modeling, we find that ChCUC1 provides instructive input into auxin-based leaf margin patterning. This input arises via transcriptional regulation of multiple auxin homeostasis components, including direct activation of WAG kinases that are known to regulate the polarity of PIN-FORMED auxin transporters. Thus, we have uncovered a mechanism that bridges biological scales by linking spatially distributed and species-specific transcription factor expression to cell-level polarity and growth, to shape diverse leaf forms.
Collapse
Affiliation(s)
- Zi-Liang Hu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Madlen I. Rast-Somssich
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Anhui Wu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Daniela Vlad
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Liam McGuire
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Lachezar A. Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Patrick Laufs
- Université Paris-Saclay, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles78000, France
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, ABT2N 1N4, Canada
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne50829, Germany
| |
Collapse
|
22
|
Kong S, Zhu M, Pan D, Lane B, Smith RS, Roeder AHK. Tradeoff Between Speed and Robustness in Primordium Initiation Mediated by Auxin-CUC1 Interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569401. [PMID: 38076982 PMCID: PMC10705432 DOI: 10.1101/2023.11.30.569401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Robustness is the reproducible development of a phenotype despite stochastic noise. It often involves tradeoffs with other performance metrics, but the mechanisms underlying such tradeoffs were largely unknown. An Arabidopsis flower robustly develops four sepals from four precisely positioned auxin maxima. The development related myb-like 1 (drmy1) mutant generates noise in auxin signaling that disrupts robustness in sepal initiation. Here, we found that increased expression of CUP-SHAPED COTYLEDON1 (CUC1), a boundary specification transcription factor, in drmy1 underlies this loss of robustness. CUC1 surrounds and amplifies stochastic auxin noise in drmy1 to form variably positioned auxin maxima and sepal primordia. Removing CUC1 from drmy1 provides time for noisy auxin signaling to resolve into four precisely positioned auxin maxima, restoring robust sepal initiation. However, removing CUC1 decreases auxin maxima intensity and slows down sepal initiation. Thus, CUC1 increases morphogenesis speed but impairs robustness against auxin noise. Further, using a computational model, we found that the observed phenotype can be explained by the effect of CUC1 in repolarizing PIN FORMED1 (PIN1), a polar auxin transporter. Lastly, our model predicts that reducing global growth rate improves developmental robustness, which we validated experimentally. Thus, our study illustrates a tradeoff between speed and robustness during development.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Present address: Department of Biology, Duke University, Durham, NC 27708, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Brendan Lane
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Richard S. Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Lead Contact
| |
Collapse
|
23
|
Shi B, Felipo-Benavent A, Cerutti G, Galvan-Ampudia C, Jilli L, Brunoud G, Mutterer J, Vallet E, Sakvarelidze-Achard L, Davière JM, Navarro-Galiano A, Walia A, Lazary S, Legrand J, Weinstain R, Jones AM, Prat S, Achard P, Vernoux T. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem. Nat Commun 2024; 15:3895. [PMID: 38719832 PMCID: PMC11079023 DOI: 10.1038/s41467-024-48116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.
Collapse
Affiliation(s)
- Bihai Shi
- College of Agriculture, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, 510642, Guangzhou, China
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Amelia Felipo-Benavent
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Guillaume Cerutti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Carlos Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Lucas Jilli
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Geraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Jérome Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Elody Vallet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Lali Sakvarelidze-Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Jean-Michel Davière
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | | | - Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Shani Lazary
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Roy Weinstain
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Salomé Prat
- Centre for Research in Agricultural Genomics, 08193 Cerdanyola, Barcelona, Spain
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France.
| |
Collapse
|
24
|
Coen E, Prusinkiewicz P. Developmental timing in plants. Nat Commun 2024; 15:2674. [PMID: 38531864 PMCID: PMC10965974 DOI: 10.1038/s41467-024-46941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Plants exhibit reproducible timing of developmental events at multiple scales, from switches in cell identity to maturation of the whole plant. Control of developmental timing likely evolved for similar reasons that humans invented clocks: to coordinate events. However, whereas clocks are designed to run independently of conditions, plant developmental timing is strongly dependent on growth and environment. Using simplified models to convey key concepts, we review how growth-dependent and inherent timing mechanisms interact with the environment to control cyclical and progressive developmental transitions in plants.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| | - Przemyslaw Prusinkiewicz
- Department of Computer Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
25
|
Ogden M, Whitcomb SJ, Khan GA, Roessner U, Hoefgen R, Persson S. Cellulose biosynthesis inhibitor isoxaben causes nutrient-dependent and tissue-specific Arabidopsis phenotypes. PLANT PHYSIOLOGY 2024; 194:612-617. [PMID: 37823413 PMCID: PMC10828196 DOI: 10.1093/plphys/kiad538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/07/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Michael Ogden
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Sarah J Whitcomb
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Cereal Crops Research Unit, USDA-ARS, Madison, WI 53726, USA
| | - Ghazanfar Abbas Khan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ute Roessner
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2600, Australia
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Mathew MM, Ganguly A, Prasad K. Multiple feedbacks on self-organized morphogenesis during plant regeneration. THE NEW PHYTOLOGIST 2024; 241:553-559. [PMID: 37984062 DOI: 10.1111/nph.19412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Decades of research have primarily emphasized genetic blueprint as the driving force behind plant regeneration. The flow of information from genetics, which manifests as biochemical properties, including hormones, has been extensively implicated in plant regeneration. However, recent advancements have unveiled additional intrinsic modules within this information flow. Here, we explore the three core modules of plant regeneration: biochemical properties, mechanical forces acting on cells, and cell geometry. We debate their roles and interactions during morphogenesis, emphasizing the potential for multiple feedbacks between these core modules to drive pattern formation during regeneration. We propose that de novo organ regeneration is a self-organized event driven by multidirectional information flow between these core modules.
Collapse
Affiliation(s)
- Mabel Maria Mathew
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Akansha Ganguly
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Kalika Prasad
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
27
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
28
|
Zhang Y, Sun X, Aphalo PJ, Zhang Y, Cheng R, Li T. Ultraviolet-A1 radiation induced a more favorable light-intercepting leaf-area display than blue light and promoted plant growth. PLANT, CELL & ENVIRONMENT 2024; 47:197-212. [PMID: 37743709 DOI: 10.1111/pce.14727] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Plants adjust their morphology in response to light environment by sensing an array of light cues. Though the wavelengths of ultraviolet-A1 radiation (UV-A1, 350-400 nm) are close to blue light (B, 400-500 nm) and share same flavoprotein photoreceptors, it remains poorly understood how plant responses to UV-A1 radiation could differ from those to B. We initially grown tomato plants under monochromatic red light (R, 660 nm) as control, subsequently transferred them to four dichromatic light treatments containing ~20 µmol m-2 s-1 of UV-A1 radiation, peaking at 370 nm (UV-A370 ) or 400 nm (V400 ), or B (450 nm, at ~20 or 1.5 µmol m-2 s-1 ), with same total photon irradiance (~200 μmol m-2 s-1 ). We show that UV-A370 radiation was the most effective in inducing light-intercepting leaf-area display formation, resulting in larger leaf area and more shoot biomass, while it triggered weaker and later transcriptome-wide responses than B. Mechanistically, UV-A370 -promoted leaf-area display response was apparent in less than 12 h and appeared as very weakly related to transcriptome level regulation, which likely depended on the auxin transportation and cell wall acidification. This study revealed wavelength-specific responses within UV-A/blue region challenging usual assumptions that the role of UV-A1 radiation function similarly as blue light in mediating plant processes.
Collapse
Affiliation(s)
- Yating Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Ince YÇ, Sugimoto K. Illuminating the path to shoot meristem regeneration: Molecular insights into reprogramming cells into stem cells. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102452. [PMID: 37709567 DOI: 10.1016/j.pbi.2023.102452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Plant cells possess the ability to dedifferentiate and reprogram into stem cell-like populations, enabling the regeneration of new organs. However, the maintenance of stem cells relies on specialized microenvironments composed of distinct cell populations with specific functions. Consequently, the regeneration process necessitates the orchestrated regulation of multiple pathways across diverse cellular populations. One crucial pathway involves the transcription factor WUSCHEL HOMEOBOX 5 (WOX5), which plays a pivotal role in reprogramming cells into stem cells and promoting their conversion into shoot meristems through WUSCHEL (WUS). Additionally, cell and tissue mechanics, including cell wall modifications and mechanical stress, critically contribute to de novo shoot organogenesis by regulating polar auxin transport. Furthermore, light signaling emerges as a key regulator of plant regeneration, directly influencing expression of meristem genes and potentially influencing aforementioned pathways as well.
Collapse
Affiliation(s)
- Yetkin Çaka Ince
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
31
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
32
|
Al-Mosleh S, Mahadevan L. How to Grow a Flat Leaf. PHYSICAL REVIEW LETTERS 2023; 131:098401. [PMID: 37721834 DOI: 10.1103/physrevlett.131.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/08/2023] [Indexed: 09/20/2023]
Abstract
Growing a flat lamina such as a leaf is almost impossible without some feedback to stabilize long wavelength modes that are easy to trigger since they are energetically cheap. Here we combine the physics of thin elastic plates with feedback control theory to explore how a leaf can remain flat while growing. We investigate both in-plane (metric) and out-of-plane (curvature) growth variation and account for both local and nonlocal feedback laws. We show that a linearized feedback theory that accounts for both spatially nonlocal and temporally delayed effects suffices to suppress long wavelength fluctuations effectively and explains recently observed statistical features of growth in tobacco leaves. Our work provides a framework for understanding the regulation of the shape of leaves and other leaflike laminar objects.
Collapse
Affiliation(s)
- Salem Al-Mosleh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
33
|
Dong J, Van Norman J, Žárský V, Zhang Y. Plant cell polarity: The many facets of sidedness. PLANT PHYSIOLOGY 2023; 193:1-5. [PMID: 37565502 PMCID: PMC10469367 DOI: 10.1093/plphys/kiad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08891, USA
| | - Jaimie Van Norman
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian’jin 300071, China
| |
Collapse
|
34
|
Mollier C, Skrzydeł J, Borowska-Wykręt D, Majda M, Bayle V, Battu V, Totozafy JC, Dulski M, Fruleux A, Wrzalik R, Mouille G, Smith RS, Monéger F, Kwiatkowska D, Boudaoud A. Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1. Cell Rep 2023; 42:112689. [PMID: 37352099 PMCID: PMC10391631 DOI: 10.1016/j.celrep.2023.112689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/01/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
Extracellular matrices contain fibril-like polymers often organized in parallel arrays. Although their role in morphogenesis has been long recognized, it remains unclear how the subcellular control of fibril synthesis translates into organ shape. We address this question using the Arabidopsis sepal as a model organ. In plants, cell growth is restrained by the cell wall (extracellular matrix). Cellulose microfibrils are the main load-bearing wall component, thought to channel growth perpendicularly to their main orientation. Given the key function of CELLULOSE SYNTHASE INTERACTIVE1 (CSI1) in guidance of cellulose synthesis, we investigate the role of CSI1 in sepal morphogenesis. We observe that sepals from csi1 mutants are shorter, although their newest cellulose microfibrils are more aligned compared to wild-type. Surprisingly, cell growth anisotropy is similar in csi1 and wild-type plants. We resolve this apparent paradox by showing that CSI1 is required for spatial consistency of growth direction across the sepal.
Collapse
Affiliation(s)
- Corentin Mollier
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon Cedex, France
| | - Joanna Skrzydeł
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Dorota Borowska-Wykręt
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Mateusz Majda
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Vincent Bayle
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon Cedex, France
| | - Virginie Battu
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon Cedex, France
| | - Jean-Chrisologue Totozafy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 41-500 Chorzów, Poland; Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Antoine Fruleux
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon Cedex, France; LPTMS, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Roman Wrzalik
- Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Richard S Smith
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Françoise Monéger
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon Cedex, France
| | - Dorota Kwiatkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon Cedex, France; LadHyX, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau Cedex, France.
| |
Collapse
|
35
|
Wang Z, Marchetti MC, Brauns F. Patterning of morphogenetic anisotropy fields. Proc Natl Acad Sci U S A 2023; 120:e2220167120. [PMID: 36947516 PMCID: PMC10068776 DOI: 10.1073/pnas.2220167120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023] Open
Abstract
Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polyp Hydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation in Hydra, and stabilize aster/vortex-like defects, as observed at a Hydra's mouth. On curved surfaces mimicking the morphologies of Hydra in various stages of development-from spheroid to adult-our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.
Collapse
Affiliation(s)
- Zihang Wang
- Department of Physics, University of California, Santa Barbara, CA93106
| | | | - Fridtjof Brauns
- Department of Physics, University of California, Santa Barbara, CA93106
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA93106
| |
Collapse
|
36
|
Mathew MM, Shanmukhan AP, Varapparambath V, Prasad K. Protocol for real-time imaging, polar protein quantification, and targeted laser ablation of regenerating shoot progenitors in Arabidopsis. STAR Protoc 2023; 4:102184. [PMID: 36952331 PMCID: PMC10064272 DOI: 10.1016/j.xpro.2023.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
Here, we provide a protocol for real-time tracking of regenerating shoot progenitors, combined with polar protein quantification and targeted laser ablation of callus cells in Arabidopsis. Using Arabidopsis strains expressing GFP-labeled polar auxin efflux carrier, PINFORMED 1 (PIN1) protein, we detail steps to prepare the callus for time-lapse confocal imaging and track the progenitors expressing PIN1-GFP, followed by mapping and quantifying PIN1 polarity using Fiji/ImageJ. We then describe targeted laser ablation of cells and subsequent time-lapse imaging to study regeneration. For complete details on the use and execution of this protocol, please refer to Varapparambath et al. (2022).1.
Collapse
Affiliation(s)
- Mabel Maria Mathew
- Indian Institute of Science Education and Research (IISER), Pune 411008, India; Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, India.
| | - Anju Pallipurath Shanmukhan
- Indian Institute of Science Education and Research (IISER), Pune 411008, India; Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, India
| | - Vijina Varapparambath
- Indian Institute of Science Education and Research (IISER), Pune 411008, India; Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, India
| | - Kalika Prasad
- Indian Institute of Science Education and Research (IISER), Pune 411008, India; Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, India.
| |
Collapse
|
37
|
Abstract
Understanding the mechanism by which patterned gene activity leads to mechanical deformation of cells and tissues to create complex forms is a major challenge for developmental biology. Plants offer advantages for addressing this problem because their cells do not migrate or rearrange during morphogenesis, which simplifies analysis. We synthesize results from experimental analysis and computational modeling to show how mechanical interactions between cellulose fibers translate through wall, cell, and tissue levels to generate complex plant tissue shapes. Genes can modify mechanical properties and stresses at each level, though the values and pattern of stresses differ from one level to the next. The dynamic cellulose network provides elastic resistance to deformation while allowing growth through fiber sliding, which enables morphogenesis while maintaining mechanical strength.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16870, USA
| |
Collapse
|
38
|
Organ Patterning at the Shoot Apical Meristem (SAM): The Potential Role of the Vascular System. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Auxin, which is transported in the outermost cell layer, is one of the major players involved in plant organ initiation and positioning at the shoot apical meristem (SAM). However, recent studies have recognized the role of putative internal signals as an important factor collaborating with the well-described superficial pathway of organogenesis regulation. Different internal signals have been proposed; however, their nature and transport route have not been precisely determined. Therefore, in this mini-review, we aimed to summarize the current knowledge regarding the auxin-dependent regulation of organ positioning at the SAM and to discuss the vascular system as a potential route for internal signals. In addition, as regular organ patterning is a universal phenomenon, we focus on the role of the vasculature in this process in the major lineages of land plants, i.e., bryophytes, lycophytes, ferns, gymnosperms, and angiosperms.
Collapse
|
39
|
Creff A, Ali O, Bied C, Bayle V, Ingram G, Landrein B. Evidence that endosperm turgor pressure both promotes and restricts seed growth and size. Nat Commun 2023; 14:67. [PMID: 36604410 PMCID: PMC9814827 DOI: 10.1038/s41467-022-35542-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
In plants, as in animals, organ growth depends on mechanical interactions between cells and tissues, and is controlled by both biochemical and mechanical cues. Here, we investigate the control of seed size, a key agronomic trait, by mechanical interactions between two compartments: the endosperm and the testa. By combining experiments with computational modelling, we present evidence that endosperm pressure plays two antagonistic roles: directly driving seed growth, but also indirectly inhibiting it through tension it generates in the surrounding testa, which promotes wall stiffening. We show that our model can recapitulate wild type growth patterns, and is consistent with the small seed phenotype of the haiku2 mutant, and the results of osmotic treatments. Our work suggests that a developmental regulation of endosperm pressure is required to prevent a precocious reduction of seed growth rate induced by force-dependent seed coat stiffening.
Collapse
Affiliation(s)
- Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342, Lyon, 69364 Cedex 07, France
| | - Olivier Ali
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342, Lyon, 69364 Cedex 07, France.
| | - Camille Bied
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342, Lyon, 69364 Cedex 07, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342, Lyon, 69364 Cedex 07, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342, Lyon, 69364 Cedex 07, France.
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342, Lyon, 69364 Cedex 07, France.
| |
Collapse
|
40
|
Peng Z, Alique D, Xiong Y, Hu J, Cao X, Lü S, Long M, Wang Y, Wabnik K, Jiao Y. Differential growth dynamics control aerial organ geometry. Curr Biol 2022; 32:4854-4868.e5. [PMID: 36272403 DOI: 10.1016/j.cub.2022.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
How gene activities and biomechanics together direct organ shapes is poorly understood. Plant leaf and floral organs develop from highly similar initial structures and share similar gene expression patterns, yet they gain drastically different shapes later-flat and bilateral leaf primordia and radially symmetric floral primordia, respectively. We analyzed cellular growth patterns and gene expression in young leaves and flowers of Arabidopsis thaliana and found significant differences in cell growth rates, which correlate with convergence sites of phytohormone auxin that require polar auxin transport. In leaf primordia, the PRESSED-FLOWER-expressing middle domain grows faster than adjacent adaxial domain and coincides with auxin convergence. In contrast, in floral primordia, the LEAFY-expressing domain shows accelerated growth rates and pronounced auxin convergence. This distinct cell growth dynamics between leaf and flower requires changes in levels of cell-wall pectin de-methyl-esterification and mechanical properties of the cell wall. Data-driven computer model simulations at organ and cellular levels demonstrate that growth differences are central to obtaining distinct organ shape, corroborating in planta observations. Together, our study provides a mechanistic basis for the establishment of early aerial organ symmetries through local modulation of differential growth patterns with auxin and biomechanics.
Collapse
Affiliation(s)
- Ziyuan Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel Alique
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Yuanyuan Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinrong Hu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwei Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| |
Collapse
|
41
|
Fozard JA, Yu M, Bezodis W, Cheng J, Spooner J, Mansfield C, Chan J, Coen E. Localization of stomatal lineage proteins reveals contrasting planar polarity patterns in Arabidopsis cotyledons. Curr Biol 2022; 32:4967-4974.e5. [PMID: 36257315 DOI: 10.1016/j.cub.2022.09.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
Many plant cells exhibit polarity, revealed by asymmetric localization of specific proteins within each cell.1,2,3,4,5,6 Polarity is typically coordinated between cells across a tissue, raising the question of how coordination is achieved. One hypothesis is that mechanical stresses provide cues.7 This idea gains support from experiments in which cotyledons were mechanically stretched transversely to their midline.8 These previously published results showed that without applied tension, the stomatal lineage cell polarity marker, BREVIS RADIX-LIKE 2 (BRXL2), exhibited no significant excess in the transverse orientation. By contrast, 7 h after stretching, BRXL2 polarity distribution exhibited transverse excess, aligned with the stretch direction. These stretching experiments involved statistical comparisons between snapshots of stretched and unstretched cotyledons, with different specimens being imaged in each case.8 Here, we image the same cotyledon before and after stretching and find no evidence for reorientation of polarity. Instead, statistical analysis shows that cotyledons contain a pre-existing transverse excess in BRXL2 polarity orientation that is not significantly modified by applied tension. The transverse excess reflects BRLX2 being preferentially localized toward the medial side of the cell, nearer to the cotyledon midline, creating a weak medial bias. A second polarity marker, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), also exhibits weak medial bias in stomatal lineages, whereas ectopic expression of BASL in non-stomatal cells exhibits strong proximal bias, as previously observed in rosette leaves. This proximal bias is also unperturbed by applied tension. Our findings therefore show that cotyledons contain two near-orthogonal coordinated biases in planar polarity: mediolateral and proximodistal.
Collapse
Affiliation(s)
- John A Fozard
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Man Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - William Bezodis
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jie Cheng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jamie Spooner
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Catherine Mansfield
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jordi Chan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
42
|
Li J, Li H, Yin N, Quan X, Wang W, Shan Q, Wang S, Bermudez RS, He W. Identification of LsPIN1 gene and its potential functions in rhizome turning of Leymus secalinus. BMC Genomics 2022; 23:753. [DOI: 10.1186/s12864-022-08979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Continuous tilling and the lateral growth of rhizomes confer rhizomatous grasses with the unique ability to laterally expand, migrate and resist disturbances. They play key roles especially in degraded grasslands, deserts, sand dunes, and other fragile ecological system. The rhizomatous plant Leymus secalinus has both rhizome buds and tiller buds that grow horizontally and upward at the ends of rhizome differentiation and elongation, respectively. The mechanisms of rhizome formation and differentiation in L. secalinus have not yet been clarified.
Results
In this study, we found that the content of gibberellin A3 (GA3) and indole-3-acetic acid (IAA) were significantly higher in upward rhizome tips than in horizontal rhizome tips; by contrast, the content of methyl jasmonate and brassinolide were significantly higher in horizontal rhizome tips than in upward rhizome tips. GA3 and IAA could stimulate the formation and turning of rhizomes. An auxin efflux carrier gene, LsPIN1, was identified from L. secalinus based on previous transcriptome data. The conserved domains of LsPIN1 and the relationship of LsPIN1 with PIN1 genes from other plants were analyzed. Subcellular localization analysis revealed that LsPIN1 was localized to the plasma membrane. The length of the primary roots (PRs) and the number of lateral roots (LRs) were higher in Arabidopsis thaliana plants overexpressing LsPIN1 than in wild-type (Col-0) plants. Auxin transport was altered and the gravitropic response and phototropic response were stronger in 35S:LsPIN1 transgenic plants compared with Col-0 plants. It also promoted auxin accumulation in root tips.
Conclusion
Our findings indicated that LsPIN1 plays key roles in auxin transport and root development. Generally, our results provide new insights into the regulatory mechanisms underlying rhizome development in L. secalinus.
Collapse
|
43
|
Bawa G, Liu Z, Wu R, Zhou Y, Liu H, Sun S, Liu Y, Qin A, Yu X, Zhao Z, Yang J, Hu M, Sun X. PIN1 regulates epidermal cells development under drought and salt stress using single-cell analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1043204. [PMID: 36466268 PMCID: PMC9716655 DOI: 10.3389/fpls.2022.1043204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Over the course of evolution, plants have developed plasticity to acclimate to environmental stresses such as drought and salt stress. These plant adaptation measures involve the activation of cascades of molecular networks involved in stress perception, signal transduction and the expression of stress related genes. Here, we investigated the role of the plasma membrane-localized transporter of auxin PINFORMED1 (PIN1) in the regulation of pavement cells (PCs) and guard cells (GCs) development under drought and salt stress conditions. The results showed that drought and salt stress treatment affected the development of PCs and GCs. Further analysis identified the different regulation mechanisms of PIN1 in regulating the developmental patterns of PCs and GCs under drought and salt stress conditions. Drought and salt stress also regulated the expression dynamics of PIN1 in pif1/3/4/5 quadruple mutants. Collectively, we revealed that PIN1 plays a crucial role in regulating plant epidermal cells development under drought and salt stress conditions, thus contributing to developmental rebustness and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
44
|
Chen B, Dang X, Bai W, Liu M, Li Y, Zhu L, Yang Y, Yu P, Ren H, Huang D, Pan X, Wang H, Qin Y, Feng S, Wang Q, Lin D. The IPGA1-ANGUSTIFOLIA module regulates microtubule organisation and pavement cell shape in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:1310-1325. [PMID: 35975703 DOI: 10.1111/nph.18433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Plant cells continuously experience mechanical stress resulting from the cell wall that bears internal turgor pressure. Cortical microtubules align with the predicted maximal tensile stress direction to guide cellulose biosynthesis and therefore results in cell wall reinforcement. We have previously identified Increased Petal Growth Anisotropy (IPGA1) as a putative microtubule-associated protein in Arabidopsis, but the function of IPGA1 remains unclear. Here, using the Arabidopsis cotyledon pavement cell as a model, we demonstrated that IPGA1 forms protein granules and interacts with ANGUSTIFOLIA (AN) to cooperatively regulate microtubule organisation in response to stress. Application of mechanical perturbations, such as cell ablation, led to microtubule reorganisation into aligned arrays in wild-type cells. This microtubule response to stress was enhanced in the IPGA1 loss-of-function mutant. Mechanical perturbations promoted the formation of IPGA1 granules on microtubules. We further showed that IPGA1 physically interacted with AN both in vitro and on microtubules. The ipga1 mutant alleles exhibited reduced interdigitated growth of pavement cells, with smooth shape. IPGA1 and AN had a genetic interaction in regulating pavement cell shape. Furthermore, IPGA1 genetically and physically interacted with the microtubule-severing enzyme KATANIN. We propose that the IPGA1-AN module regulates microtubule organisation and pavement cell shape.
Collapse
Affiliation(s)
- Binqing Chen
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xie Dang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenting Bai
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Liu
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Li
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lilan Zhu
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanqiu Yang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Peihang Yu
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huibo Ren
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingquan Huang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xue Pan
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiliang Feng
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Qin Wang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deshu Lin
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
45
|
Kareem A, Bhatia N, Ohno C, Heisler MG. PIN-FORMED1 polarity in the plant shoot epidermis is insensitive to the polarity of neighboring cells. iScience 2022; 25:105062. [PMID: 36157591 PMCID: PMC9494258 DOI: 10.1016/j.isci.2022.105062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
At the Arabidopsis shoot apex, epidermal cells are planar-polarized along an axis marked by the asymmetric localization patterns of several proteins including PIN-FORMED1 (PIN1), which facilitates the directional efflux of the plant hormone auxin to pattern phyllotaxis. While PIN1 polarity is known to be regulated non-cell autonomously via the MONOPTEROS (MP) transcription factor, how this occurs has not been determined. Here, we use mosaic expression of the serine threonine kinase PINOID (PID) to test whether PIN1 polarizes according to the polarity of neighboring cells. Our findings reveal that PIN1 is insensitive to the polarity of PIN1 in neighboring cells arguing against auxin flux or extracellular auxin concentrations acting as a polarity cue, in contrast to previous model proposals.
Collapse
Affiliation(s)
- Abdul Kareem
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Neha Bhatia
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Carolyn Ohno
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marcus G Heisler
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
46
|
In silico analysis of key regulatory networks related to microfibril angle in Populus trichocarpa Hook. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractDissection of regulatory network that control wood structure is highly challenging in functional genomics. Nevertheless, due to the availability of genomic, transcriptomic and proteomic sequences, a large amount of information is available for use in achieving this goal. MicroRNAs, which compose a class of small non-coding RNA molecules that inhibit protein translation by targeting mRNA cleavage sites and thus regulate a wide variety of developmental and physiological processes in plants, are important parts of this regulatory network. These findings and the availability of sequence information have made it possible to carry out an in silico analysis to predict and annotate miRNAs and their target genes associated with an important factor affecting wood rigidity, microfibril angle (MFA), throughout the Populus trichocarpa Hook. genome. Our computational approach revealed miRNAs and their targets via ESTs, sequences putatively associated with microfibril angle. In total, 250 miRNAs were identified as RNA molecules with roles in the silencing and post-transcriptional regulation of the expression of nine genes. We found SHY2, IAA4 (ATAUX2–11), BZIP60, AP2, MYB15, ABI3, MYB17, LAF1 and MYB28 as important nodes in a network with possible role in MFA determination. Other co-expressed genes putatively involved in this regulatory system were also identified by construction of a co-expression network. The candidate genes from this study may help unravel the regulatory networks putatively linked to microfibril angle.
Collapse
|
47
|
Mills AM, Rasmussen CG. Defects in division plane positioning in the root meristematic zone affect cell organization in the differentiation zone. J Cell Sci 2022; 135:jcs260127. [PMID: 36074053 PMCID: PMC9658997 DOI: 10.1242/jcs.260127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Cell-division-plane orientation is critical for plant and animal development and growth. TANGLED1 (TAN1) and AUXIN-INDUCED IN ROOT CULTURES 9 (AIR9) are division-site-localized microtubule-binding proteins required for division-plane positioning. The single mutants tan1 and air9 of Arabidopsis thaliana have minor or no noticeable phenotypes, but the tan1 air9 double mutant has synthetic phenotypes including stunted growth, misoriented divisions and aberrant cell-file rotation in the root differentiation zone. These data suggest that TAN1 plays a role in non-dividing cells. To determine whether TAN1 is required in elongating and differentiating cells in the tan1 air9 double mutant, we limited its expression to actively dividing cells using the G2/M-specific promoter of the syntaxin KNOLLE (pKN:TAN1-YFP). Unexpectedly, in addition to rescuing division-plane defects, expression of pKN:TAN1-YFP rescued root growth and cell file rotation defects in the root-differentiation zone in tan1 air9 double mutants. This suggests that defects that occur in the meristematic zone later affect the organization of elongating and differentiating cells.
Collapse
Affiliation(s)
| | - Carolyn G. Rasmussen
- Graduate Group in Biochemistry and Molecular Biology
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
48
|
Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022; 11:cells11172761. [PMID: 36078168 PMCID: PMC9454831 DOI: 10.3390/cells11172761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.
Collapse
|
49
|
Cheng S, Wang Y. Subcellular trafficking and post-translational modification regulate PIN polarity in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:923293. [PMID: 35968084 PMCID: PMC9363823 DOI: 10.3389/fpls.2022.923293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Auxin regulates plant growth and tropism responses. As a phytohormone, auxin is transported between its synthesis sites and action sites. Most natural auxin moves between cells via a polar transport system that is mediated by PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually determine the directionality of intercellular auxin flow. Different internal cues and external stimuli modulate PIN polar distribution and activity at multiple levels, including transcription, protein stability, subcellular trafficking, and post-translational modification, and thereby regulate auxin-distribution-dependent development. Thus, the different regulation levels of PIN polarity constitute a complex network. For example, the post-translational modification of PINs can affect the subcellular trafficking of PINs. In this review, we focus on subcellular trafficking and post-translational modification of PINs to summarize recent progress in understanding PIN polarity.
Collapse
Affiliation(s)
- Shuyang Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Guo K, Huang C, Miao Y, Cosgrove DJ, Hsia KJ. Leaf morphogenesis: The multifaceted roles of mechanics. MOLECULAR PLANT 2022; 15:1098-1119. [PMID: 35662674 DOI: 10.1016/j.molp.2022.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Plants produce a rich diversity of biological forms, and the diversity of leaves is especially notable. Mechanisms of leaf morphogenesis have been studied in the past two decades, with a growing focus on the interactive roles of mechanics in recent years. Growth of plant organs involves feedback by mechanical stress: growth induces stress, and stress affects growth and morphogenesis. Although much attention has been given to potential stress-sensing mechanisms and cellular responses, the mechanical principles guiding morphogenesis have not been well understood. Here we synthesize the overarching roles of mechanics and mechanical stress in multilevel and multiple stages of leaf morphogenesis, encompassing leaf primordium initiation, phyllotaxis and venation patterning, and the establishment of complex mature leaf shapes. Moreover, the roles of mechanics at multiscale levels, from subcellular cytoskeletal molecules to single cells to tissues at the organ scale, are articulated. By highlighting the role of mechanical buckling in the formation of three-dimensional leaf shapes, this review integrates the perspectives of mechanics and biology to provide broader insights into the mechanobiology of leaf morphogenesis.
Collapse
Affiliation(s)
- Kexin Guo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Daniel J Cosgrove
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|