1
|
Reynolds M, Chapman S, Crespo-Herrera L, Molero G, Mondal S, Pequeno DNL, Pinto F, Pinera-Chavez FJ, Poland J, Rivera-Amado C, Saint Pierre C, Sukumaran S. Breeder friendly phenotyping. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110396. [PMID: 32534615 DOI: 10.1016/j.plantsci.2019.110396] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 05/18/2023]
Abstract
The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots collecting high-resolution data sets on a wide array of traits. This has been made possible by recent advances in sensor technology and data processing. Nonetheless, more comprehensive often destructive phenotyping still has much to offer in breeding as well as research. This review considers the 'breeder friendliness' of phenotyping within three main domains: (i) the 'minimum data set', where being 'handy' or accessible and easy to collect and use is paramount, visual assessment often being preferred; (ii) the high throughput phenotyping (HTP), relatively new for most breeders, and requiring significantly greater investment with technical hurdles for implementation and a steeper learning curve than the minimum data set; (iii) detailed characterization or 'precision' phenotyping, typically customized for a set of traits associated with a target environment and requiring significant time and resources. While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models, that can be built from the high-throughput and detailed precision phenotypes. This review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translational research to deliver other new breeding resources, and how the different categories of phenotyping listed above apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.
Collapse
Affiliation(s)
| | - Scott Chapman
- CISRO Agriculture and Food, The University of Queensland, Australia
| | | | - Gemma Molero
- International Maize and Wheat Improvement Centre, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Negrutiu I, Frohlich MW, Hamant O. Flowering Plants in the Anthropocene: A Political Agenda. TRENDS IN PLANT SCIENCE 2020; 25:349-368. [PMID: 31964603 DOI: 10.1016/j.tplants.2019.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Flowering plants are the foundation of human civilization, providing biomass for food, fuel, and materials to satisfy human needs, dependent on fertile soil, adequate water, and favorable weather. Conversely, failure of any of these inputs has caused catastrophes. Today, human appropriation of biomass is threatening planetary boundaries, inducing social and political unrest worldwide. Human societies are bound to rethink agriculture and forestry to restore and safeguard natural resources while improving the overall quality of life. Here, we explore why and how. Through an evolutionary and quantitative analysis of agriculture, and bridging plant and Earth sciences, we anticipate the advent of a research and policy framework, integrating plant science in all sectors: the economy, local and global governance, and geopolitics.
Collapse
Affiliation(s)
- Ioan Negrutiu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Michael W Frohlich
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
3
|
|
4
|
Xu Q, Dai R, Ruan Y, Rensing C, Liu M, Guo S, Ling N, Shen Q. Probing active microbes involved in Bt-containing rice straw decomposition. Appl Microbiol Biotechnol 2018; 102:10273-10284. [PMID: 30269215 DOI: 10.1007/s00253-018-9394-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 11/30/2022]
Abstract
Transgenic Bacillus thuringiensis (Bt) rice extends significant protection against insect pests and meets the increasing demands for food and energy. Many studies have been conducted investigating the impacts of Bt rice to the agricultural ecosystem, but much less attention has been given to efforts attempting to determine how the presence of Bt rice influences and shapes the microbial community, especially the active microbes. Stable isotope probing and high-throughput sequencing were employed to explore the active microbes involved in Bt-containing straw decomposition. Compared to its near isoline, the Bt straw contained higher contents of total N, total P, total K, lignin, cellulose, and Cry1Ab toxin protein. These chemical differences did not affect the decomposition rate but significantly changed the active microbial decomposer communities. During the decomposition of Bt-containing straw, fungi were more affected than bacteria. Agromyces, Terrabacter, Microbacterium, Glycomyces, and Kribbella were the most representative unique (existed only in the Bt treatments and appeared at the early stage) bacterial genera, and Trichoderma was the most representative unique fungal genus in the Bt straw decomposition. By using similarity index calculation and function prediction, the significant differences between Bt straw and non-Bt straw treatments were found to be transient for both microbial taxa and functional traits. These results suggested that Bt rice has a significant but transient impact on soil microbes in terms of microbial straw decomposition.
Collapse
Affiliation(s)
- Qicheng Xu
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Dai
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Ruan
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Manqiang Liu
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qirong Shen
- Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Białas A, Zess EK, De la Concepcion JC, Franceschetti M, Pennington HG, Yoshida K, Upson JL, Chanclud E, Wu CH, Langner T, Maqbool A, Varden FA, Derevnina L, Belhaj K, Fujisaki K, Saitoh H, Terauchi R, Banfield MJ, Kamoun S. Lessons in Effector and NLR Biology of Plant-Microbe Systems. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:34-45. [PMID: 29144205 DOI: 10.1101/171223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.
Collapse
Affiliation(s)
- Aleksandra Białas
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Erin K Zess
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | - Marina Franceschetti
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Helen G Pennington
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- 3 Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Jessica L Upson
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Emilie Chanclud
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Chih-Hang Wu
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Freya A Varden
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Lida Derevnina
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Khaoula Belhaj
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Koki Fujisaki
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
| | - Hiromasa Saitoh
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
- 5 Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryohei Terauchi
- 3 Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
| | - Mark J Banfield
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Białas A, Zess EK, De la Concepcion JC, Franceschetti M, Pennington HG, Yoshida K, Upson JL, Chanclud E, Wu CH, Langner T, Maqbool A, Varden FA, Derevnina L, Belhaj K, Fujisaki K, Saitoh H, Terauchi R, Banfield MJ, Kamoun S. Lessons in Effector and NLR Biology of Plant-Microbe Systems. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:34-45. [PMID: 29144205 DOI: 10.1094/mpmi-08-17-0196-fi] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.
Collapse
Affiliation(s)
- Aleksandra Białas
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Erin K Zess
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | - Marina Franceschetti
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Helen G Pennington
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- 3 Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Jessica L Upson
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Emilie Chanclud
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Chih-Hang Wu
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Freya A Varden
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Lida Derevnina
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Khaoula Belhaj
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Koki Fujisaki
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
| | - Hiromasa Saitoh
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
- 5 Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryohei Terauchi
- 3 Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
| | - Mark J Banfield
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|