1
|
Gu Q, Wu J, Tian Y, Cheng S, Zhang ZC, Han J. Gαq splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila. J Biol Chem 2020; 295:5554-5563. [PMID: 32198182 PMCID: PMC7186184 DOI: 10.1074/jbc.ra120.012764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Indexed: 11/06/2022] Open
Abstract
Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein-coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.
Collapse
Affiliation(s)
- Qiuxiang Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jinglin Wu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shanshan Cheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
2
|
Chan S, Shen D, Sang Y, Wang S, Wang Y, Chen C, Gao B, Song C. Development of enhancer-trapping and -detection vectors mediated by the Tol2 transposon in zebrafish. PeerJ 2019; 7:e6862. [PMID: 31106068 PMCID: PMC6499061 DOI: 10.7717/peerj.6862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Enhancers are key transcriptional drivers of gene expression. The identification of enhancers in the genome is central for understanding gene-expression programs. Although transposon-mediated enhancer trapping (ET) is a powerful approach to the identification of enhancers in zebrafish, its efficiency varies considerably. To improve the ET efficiency, we constructed Tol2-mediated ET vectors with a reporter gene (mCherry) expression box driven by four minimal promoters (Gata, Myc, Krt4 and Oct4), respectively. The ET efficiency and expression background were compared among the four promoters by zebrafish embryo injection at the one-cell stage. The results showed that the Gata minimal promoter yielded the lowest basic expression and the second-highest trapping efficiency (44.6% at 12 hpf (hour post-fertilization) and 23.1% at 72 hpf, n = 305 and n = 307). The Krt4 promoter had the highest trapping efficiency (64% at 12 hpf and 67.1% at 72 hpf, n = 302 and n = 301) and the strongest basic expression. To detect enhancer activity, chicken 5′HS4 double insulators were cloned into the two ET vectors with the Gata or Krt4 minimal promoter, flanking the mCherry expression box. The resulting detection vectors were injected into zebrafish embryos. mCherry expression driven by the Gata promoter (about 5%, n = 301) was decreased significantly compared with that observed for embryos injected with the ET vectors (23% at 72 hpf, n = 308). These results suggest that the insulators block the genome-position effects and that this vector is fit for enhancer-activity evaluation. To assess the compatibility between the enhancers and the minimal promoters, four enhancers (CNS1, Z48, Hand2 and Hs769) were cloned upstream of the Gata or Beta-globin minimal promoter in the enhancer-activity-detection vectors. The resulting recombinant vectors were assayed by zebrafish embryo injection. We found that Z48 and CNS1 responded to the Gata minimal promoter, and that Hand2 only responded to the Beta-globin minimal promoter. In contrast, Hs769 did not respond to either the Gata or Beta-globin minimal promoters. These results suggest the existence of compatibility between enhancers and minimal promoters. This study represents a systematic approach to the discovery of optional ET and enhancer-detection vectors. We are eager to provide a superior tool for understanding functional genomics.
Collapse
Affiliation(s)
- Shuheng Chan
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Dan Shen
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Yatong Sang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Saisai Wang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Yali Wang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Cai Chen
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Bo Gao
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Chengyi Song
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Enhancer Trapping and Annotation in Zebrafish Mediated with Sleeping Beauty, piggyBac and Tol2 Transposons. Genes (Basel) 2018; 9:genes9120630. [PMID: 30551672 PMCID: PMC6316676 DOI: 10.3390/genes9120630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Although transposon-mediated enhancer trapping (ET) is successfully applied in diverse models, the efficiency of various transposon systems varies significantly, and little information is available regarding efficiency of enhancer trapping by various transposons in zebrafish. Most potential enhancers (Ens) still lack evidence of actual En activity. Here, we compared the differences in ET efficiency between sleeping beauty (SB), piggyBac (PB) and Tol2 transposons. Tol2 represented the highest germline transfer efficiencies at 55.56% (NF0 = 165), followed by SB (38.36%, NF0 = 151) and PB (32.65%, NF0 = 149). ET lines generated by the Tol2 transposon tended to produce offspring with a single expression pattern per line, while PB and SB tended to generate embryos with multiple expression patterns. In our tests, 10 putative Ens (En1–10) were identified by splinkerette PCR and comparative genomic analysis. Combining the GFP expression profiles and mRNA expression patterns revealed that En1 and En2 may be involved in regulation of the expression of dlx1a and dlx2a, while En6 may be involved in regulation of the expression of line TK4 transgene and rps26, and En7 may be involved in the regulation of the expression of wnt1 and wnt10b. Most identified Ens were found to be transcribed in zebrafish embryos, and their regulatory function may involve eRNAs.
Collapse
|
4
|
Nam SC. Integration of a faculty's ongoing research into an undergraduate laboratory teaching class in developmental biology. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:141-150. [PMID: 29193628 DOI: 10.1002/bmb.21095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/07/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Traditional developmental biology laboratory classes have utilized a number of different model organisms to allow students to be exposed to diverse biological phenomena in developing organisms. This traditional approach has mainly focused on the diverse morphological and anatomical descriptions of the developing organisms. However, modern developmental biology is focusing more on conserved genetic networks which are responsible for generating conserved body patterns in developing organisms. Therefore, it is necessary to develop a new pedagogical tool to educate undergraduate biology students in the laboratory class of developmental biology with the genetic principles which are responsible for generating and controlling the developing body patterns. A new undergraduate laboratory class for developmental biology was developed in order to offer students the opportunity to explore a wide range of experimental procedures, also incorporating the instructor's on-going research. Thereby the course can serve as a bridge between research and education by combining both into a single theme. The course design involves a sequence of exercises which can be easily adapted to the faculty's ongoing research. This style of laboratory coursework could be a transitional form between a regular laboratory course and a discovery-based laboratory course. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):141-150, 2018.
Collapse
Affiliation(s)
- Sang-Chul Nam
- Department of Biology, Texas A&M International University, Laredo, Texas, 78041
| |
Collapse
|