1
|
Baran H, Jan Pietryja M, Kepplinger B. Importance of Modulating Kynurenic Acid Metabolism-Approaches for the Treatment of Dementia. Biomolecules 2025; 15:74. [PMID: 39858468 PMCID: PMC11764436 DOI: 10.3390/biom15010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms. The discovery of new compounds with the ability to block kynurenine aminotransferases opens new therapeutic avenues for the treatment of memory impairment and dementia. The newly developed Helix pomatia snail model of memory can be used for the assessment of novel pharmacological approaches. Dietary supplementation with natural molecular/herbal extracts, exercise, and physical activity have significant impacts on endogenous pharmacology by reducing kynurenic acid synthesis, and these factors are likely to significantly modulate steady-state biological conditions and delay the negative consequences of aging, including the onset of pathological processes.
Collapse
Affiliation(s)
- Halina Baran
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Neurophysiology Unit, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Marcelin Jan Pietryja
- St. Francis Herbarium, Monastery of the Franciscan Friars Minor, 40-760 Katowice, Poland;
| | - Berthold Kepplinger
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Department of Neurology, Neuropsychiatric Hospital, 3362 Mauer-Amstetten, Austria
| |
Collapse
|
2
|
Lemieux GA, Yoo S, Lin L, Vohra M, Ashrafi K. The steroid hormone ADIOL promotes learning by reducing neural kynurenic acid levels. Genes Dev 2023; 37:998-1016. [PMID: 38092521 PMCID: PMC10760639 DOI: 10.1101/gad.350745.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3β, 17β-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Shinja Yoo
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Mihir Vohra
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
3
|
Higurashi S, Tsukada S, Aleogho BM, Park JH, Al-Hebri Y, Tanaka M, Nakano S, Mori I, Noma K. Bacterial diet affects the age-dependent decline of associative learning in Caenorhabditis elegans. eLife 2023; 12:81418. [PMID: 37252859 DOI: 10.7554/elife.81418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
The causality and mechanism of dietary effects on brain aging are still unclear due to the long time scales of aging. The nematode Caenorhabditis elegans has contributed to aging research because of its short lifespan and easy genetic manipulation. When fed the standard laboratory diet, Escherichia coli, C. elegans experiences an age-dependent decline in temperature-food associative learning, called thermotaxis. To address if diet affects this decline, we screened 35 lactic acid bacteria as alternative diet and found that animals maintained high thermotaxis ability when fed a clade of Lactobacilli enriched with heterofermentative bacteria. Among them, Lactobacillus reuteri maintained the thermotaxis of aged animals without affecting their lifespan and motility. The effect of Lb. reuteri depends on the DAF-16 transcription factor functioning in neurons. Furthermore, RNA sequencing analysis revealed that differentially expressed genes between aged animals fed different bacteria were enriched with DAF-16 targets. Our results demonstrate that diet can impact brain aging in a daf-16-dependent manner without changing the lifespan.
Collapse
Affiliation(s)
- Satoshi Higurashi
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Sachio Tsukada
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Binta Maria Aleogho
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| | - Joo Hyun Park
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masaru Tanaka
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Noma
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Zhu N, Liu R, Xu MH, Li Y. Neuroprotective Actions of Different Exogenous Nucleotides in H 2O 2-Induced Cell Death in PC-12 Cells. Molecules 2023; 28:molecules28031226. [PMID: 36770893 PMCID: PMC9920452 DOI: 10.3390/molecules28031226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Exogenous nucleotides (NTs) are considered conditionally essential nutrients, and the brain cannot synthesize NTs de novo. Therefore, the external supplementation of exogenous NTs is of great significance for maintaining normal neuronal metabolism and function under certain conditions, such as brain aging. This study, therefore, sets out to assess the neuroprotective effect of four kinds of single exogenous NTs and a mixture of the NTs, and to elucidate the potential mechanism. A rat pheochromocytoma cell line PC-12 was treated with different concentrations of exogenous NTs after 4 h of exposure to 200 µM H2O2. We found that the exogenous NTs exerted significant neuroprotection through decreasing neuron apoptosis and DNA damage, ameliorating inflammation and mitochondrial dysfunction, promoting cell viability, and augmenting antioxidant activity, and that they tended to up-regulate the NAD+/SIRTI/PGC-1α pathway involved in mitochondrial biogenesis. Among the different NTs, the neuroprotective effect of AMP seemed to be more prominent, followed by the NT mixture, NMN, and CMP. AMP also exhibited the strongest antioxidant activity in H2O2-treated PC-12 cells. UMP was excellent at inhibiting neuronal inflammation and improving mitochondrial function, while GMP offered major advantages in stabilizing mitochondrial membrane potential. The mixture of NTs had a slightly better performance than NMN, especially in up-modulating the NAD+/SIRTI/PGC-1α pathway, which regulates mitochondrial biogenesis. These results suggest that antioxidant activity, anti-inflammatory activity, and protection of mitochondrial function are possible mechanisms of the neuroprotective actions of exogenous NTs, and that the optimization of the mixture ratio and the concentration of NTs may achieve a better outcome.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Riu Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Mei-Hong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-1177
| |
Collapse
|
5
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Lin L, Lemieux GA, Enogieru OJ, Giacomini KM, Ashrafi K. Neural production of kynurenic acid in Caenorhabditis elegans requires the AAT-1 transporter. Genes Dev 2020; 34:1033-1038. [PMID: 32675325 PMCID: PMC7397858 DOI: 10.1101/gad.339119.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
In this study, Lin et al. investigated the mechanisms that import kyneurine (Kyn), a prescursor to kynurenic acid (KynA), which links peripheral metabolic status to neural functions including learning and memory, into the nervous system. They provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production. Kynurenic acid (KynA) levels link peripheral metabolic status to neural functions including learning and memory. Since neural KynA levels dampen learning capacity, KynA reduction has been proposed as a therapeutic strategy for conditions of cognitive deficit such as neurodegeneration. While KynA is generated locally within the nervous system, its precursor, kynurenine (Kyn), is largely derived from peripheral resources. The mechanisms that import Kyn into the nervous system are poorly understood. Here, we provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production.
Collapse
Affiliation(s)
- Lin Lin
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - George A Lemieux
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Osatohanmwen Jessica Enogieru
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
7
|
|
8
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
9
|
Roberts Buceta PM, Romanelli-Cedrez L, Babcock SJ, Xun H, VonPaige ML, Higley TW, Schlatter TD, Davis DC, Drexelius JA, Culver JC, Carrera I, Shepherd JN, Salinas G. The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans. J Biol Chem 2019; 294:11047-11053. [PMID: 31177094 PMCID: PMC6635453 DOI: 10.1074/jbc.ac119.009475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.
Collapse
Affiliation(s)
| | - Laura Romanelli-Cedrez
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Shannon J Babcock
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Helen Xun
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Miranda L VonPaige
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Thomas W Higley
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Tyler D Schlatter
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Dakota C Davis
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Julia A Drexelius
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - John C Culver
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Inés Carrera
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and.
| | - Gustavo Salinas
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay.
| |
Collapse
|
10
|
Guo N, Wang J, Wang X. Effect of starvation and high-carbohydrate diet on learning ability of Caenorhabditis elegans. Heliyon 2019; 5:e01289. [PMID: 30891518 PMCID: PMC6403438 DOI: 10.1016/j.heliyon.2019.e01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/22/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
Starvation and high-carbohydrate diet have a big impact on our health, while their effects on the learning ability are not so clear. Here, we used C. elegans as the model organism to investigate it. We starved the worms for 24 h or fed them with glucose since hatching, and then measured their learning ability at L4 stage using mechanosensory stimulation assay. The results showed that the learning ability was significantly decreased by starvation, while could be gradually recovered after 3 h normal feeding. After glucose treatment, the length-width ratio of worm was reduced and the learning ability was also significantly decreased. Interestingly, this effect could be passed down two generations probably through epigenetic inheritance. To understand the mechanism of these effects, age-1 and mec-3 mutants were used and they affected the learning ability differently under normal or adverse conditions. Therefore, we concluded that starvation and high-carbohydrate diet could modulate the learning ability of C. elegans, and they were regulated by different gene networks.
Collapse
Affiliation(s)
- Naijing Guo
- The High School Affiliated to Renmin University, China
| | - Jiayu Wang
- Chaoyang Experimental Primary School Affiliated to Capital Normal University, China
| | - XiangMing Wang
- Institute of Biophysics, Chinese Academy of Sciences, China,Corresponding author.
| |
Collapse
|
11
|
Zakrocka I, Targowska-Duda KM, Wnorowski A, Kocki T, Jóźwiak K, Turski WA. Influence of Cyclooxygenase-2 Inhibitors on Kynurenic Acid Production in Rat Brain in Vitro. Neurotox Res 2019; 35:244-254. [PMID: 30178287 PMCID: PMC6313367 DOI: 10.1007/s12640-018-9952-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Significant body of evidence suggests that abnormal kynurenic acid (KYNA) level is involved in the pathophysiology of central nervous system disorders. In the brain, KYNA is synthesized from kynurenine (KYN) by kynurenine aminotransferases (KATs), predominantly by KAT II isoenzyme. Blockage of ionotropic glutamate (GLU) receptors is a main cellular effect of KYNA. High KYNA levels have been linked with psychotic symptoms and cognitive dysfunction in animals and humans. As immunological imbalance and impaired glutamatergic neurotransmission are one of the crucial processes in neurological pathologies, we aimed to analyze the effect of anti-inflammatory agents, inhibitors of cyclooxygenase-2 (COX-2): celecoxib, niflumic acid, and parecoxib, on KYNA synthesis and KAT II activity in rat brain in vitro. The influence of COX-2 inhibitors was examined in rat brain cortical slices and on isolated KAT II enzyme. Niflumic acid and parecoxib decreased in a dose-dependent manner KYNA production and KAT II activity in rat brain cortex in vitro, whereas celecoxib was ineffective. Molecular docking results suggested that niflumic acid and parecoxib interact with an active site of KAT II. In conclusion, niflumic acid and parecoxib are dual COX-2 and KAT II inhibitors.
Collapse
Affiliation(s)
- Izabela Zakrocka
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland.
| | | | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
12
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
13
|
Vohra M, Lemieux GA, Lin L, Ashrafi K. Kynurenic acid accumulation underlies learning and memory impairment associated with aging. Genes Dev 2018; 32:14-19. [PMID: 29386332 PMCID: PMC5828390 DOI: 10.1101/gad.307918.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Vohra et al. show that in C. elegans, a significant portion of the decline in learning and memory associated with aging is due to accumulation of a metabolite called kynurenic acid (KYNA), an endogenous antagonist of neural NMDA receptors. A general feature of animal aging is decline in learning and memory. Here we show that in Caenorhabditis elegans, a significant portion of this decline is due to accumulation of kynurenic acid (KYNA), an endogenous antagonist of neural N-methyl-D-aspartate receptors (NMDARs). We show that activation of a specific pair of interneurons either through genetic means or by depletion of KYNA significantly improves learning capacity in aged animals even when the intervention is applied in aging animals. KYNA depletion also improves memory. We show that insulin signaling is one factor in KYNA accumulation.
Collapse
Affiliation(s)
- Mihir Vohra
- Department of Physiology, University of California at San Francisco, San Francisco California 94158, USA
| | - George A Lemieux
- Department of Physiology, University of California at San Francisco, San Francisco California 94158, USA
| | - Lin Lin
- Department of Physiology, University of California at San Francisco, San Francisco California 94158, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California at San Francisco, San Francisco California 94158, USA
| |
Collapse
|