1
|
Vasilev F, Mihajlović AI, Rémillard-Labrosse G, FitzHarris G. Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos. Dev Cell 2025:S1534-5807(25)00002-4. [PMID: 39862857 DOI: 10.1016/j.devcel.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules. We show that apoptotic regulators are shared through cytokinetic bridges and that these bridges ensure that if one cell enters apoptosis, its sister cell does as well. Long-lived cytokinetic bridges are thus a previously unappreciated form of cell-cell communication within the mouse embryo that coordinate the clearance of pairs of cells with similar developmental histories.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Aleksandar I Mihajlović
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Obstetrics and Gynaecology, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
2
|
Martis ASA, Soundararajan L, Shetty P, Moin S, Vanje T, Jai Sankar Y, Parveen S. Chromosome number alterations cause apoptosis and cellular hypertrophy in induced pluripotent stem cell models of embryonic epiblast cells. Biol Open 2025; 14:BIO061814. [PMID: 39851179 PMCID: PMC11789280 DOI: 10.1242/bio.061814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/26/2025] Open
Abstract
Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation. Upon reversine treatment, we obtained cells with varied chromosomal content that retained pluripotency and potential to differentiate into cells of three germ lineages. However, these cells displayed lagging chromosomes, increased micronuclei content, high p53 expression and excessive apoptotic activity. Cell proliferation was not affected. Prolonged in vitro culture of these cells resulted in a selective pool of cells with supernumerary chromosomes, which exhibited cellular hypertrophy, enlarged nuclei, and overproduction of total RNAs and proteins. We conclude that increased DNA damage responses, apoptosis, and improper cellular mass and functions are possible mechanisms that contribute to abnormal epiblast development.
Collapse
Affiliation(s)
- Althea Stella Anil Martis
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Loshini Soundararajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pallavi Shetty
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Syed Moin
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tejashree Vanje
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Yogeshwaran Jai Sankar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shagufta Parveen
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
3
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Kakourou G, Sofocleous C, Mamas T, Vrettou C, Traeger-Synodinos J. The current clinical applications of preimplantation genetic testing (PGT): acknowledging the limitations of biology and technology. Expert Rev Mol Diagn 2024; 24:767-775. [PMID: 39107971 DOI: 10.1080/14737159.2024.2390187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Preimplantation Genetic Testing (PGT) is a cutting-edge test used to detect genetic abnormalities in embryos fertilized through Medically Assisted Reproduction (MAR). PGT aims to ensure that embryos selected for transfer are free of specific genetic conditions or chromosome abnormalities, thereby reducing chances for unsuccessful MAR cycles, complicated pregnancies, and genetic diseases in future children. AREAS COVERED In PGT, genetics, embryology, and technology progress and evolve together. Biological and technological limitations are described and addressed to highlight complexity and knowledge constraints and draw attention to concerns regarding safety of procedures, clinical validity, and utility, extent of applications and overall ethical implications for future families and society. EXPERT OPINION Understanding the genetic basis of diseases along with advanced technologies applied in embryology and genetics contribute to faster, cost-effective, and more efficient PGT. Next Generation Sequencing-based techniques, enhanced by improved bioinformatics, are expected to upgrade diagnostic accuracy. Complicating findings such as mosaicism, mt-DNA variants, variants of unknown significance, or variants related to late-onset or polygenic diseases will however need further appraisal. Emphasis on monitoring such emerging data is crucial for evidence-based counseling while standardized protocols and guidelines are essential to ensure clinical value and respect of Ethical, Legal and Societal Issues.
Collapse
Affiliation(s)
- Georgia Kakourou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Thalia Mamas
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Vrettou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
5
|
Zhang X, Zheng PS. Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development. J Assist Reprod Genet 2024; 41:1127-1141. [PMID: 38386118 PMCID: PMC11143108 DOI: 10.1007/s10815-024-03048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Aneuploidy is one of the main causes of miscarriage and in vitro fertilization failure. Mitotic abnormalities in preimplantation embryos are the main cause of mosaicism, which may be influenced by several endogenous factors such as relaxation of cell cycle control mechanisms, defects in chromosome cohesion, centrosome aberrations and abnormal spindle assembly, and DNA replication stress. In addition, incomplete trisomy rescue is a rare cause of mosaicism. However, there may be a self-correcting mechanism in mosaic embryos, which allows some mosaicisms to potentially develop into normal embryos. At present, it is difficult to accurately diagnose mosaicism using preimplantation genetic testing for aneuploidy. Therefore, in clinical practice, embryos diagnosed as mosaic should be considered comprehensively based on the specific situation of the patient.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China.
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of People's Republic of China, Xi'an, 710061, Shanxi, P.R. China.
| |
Collapse
|
6
|
Paul S, Sarraf SA, Nam KH, Zavar L, DeFoor N, Biswas SR, Fritsch LE, Yaron TM, Johnson JL, Huntsman EM, Cantley LC, Ordureau A, Pickrell AM. NAK-associated protein 1/NAP1 activates TBK1 to ensure accurate mitosis and cytokinesis. J Cell Biol 2024; 223:e202303082. [PMID: 38059900 PMCID: PMC10702366 DOI: 10.1083/jcb.202303082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Subcellular location and activation of Tank Binding Kinase 1 (TBK1) govern precise progression through mitosis. Either loss of activated TBK1 or its sequestration from the centrosomes causes errors in mitosis and growth defects. Yet, what regulates its recruitment and activation on the centrosomes is unknown. We identified that NAK-associated protein 1 (NAP1) is essential for mitosis, binding to and activating TBK1, which both localize to centrosomes. Loss of NAP1 causes several mitotic and cytokinetic defects due to inactivation of TBK1. Our quantitative phosphoproteomics identified numerous TBK1 substrates that are not only confined to the centrosomes but are also associated with microtubules. Substrate motifs analysis indicates that TBK1 acts upstream of other essential cell cycle kinases like Aurora and PAK kinases. We also identified NAP1 as a TBK1 substrate phosphorylating NAP1 at S318 to promote its degradation by the ubiquitin proteasomal system. These data uncover an important distinct function for the NAP1-TBK1 complex during cell division.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Shireen A. Sarraf
- Biochemistry Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leila Zavar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nicole DeFoor
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Lauren E. Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Emily M. Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
7
|
Wang YQ, Qu HX, Dong YW, Qi JJ, Wei HK, Sun H, Jiang H, Zhang JB, Sun BX, Liang S. Inhibition of FSP1 impairs early embryo developmental competence in pigs. Theriogenology 2024; 214:257-265. [PMID: 37944430 DOI: 10.1016/j.theriogenology.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Ferroptosis suppressor protein 1 (FSP1) is a glutathione-independent ferroptosis inhibitory factor. FSP1 has been found to play a crucial role in the regulation of mitochondrial function and ferroptosis. However, its function in porcine early embryonic development remains unknown. In the present research, we found that FSP1 was expressed at different stages during porcine early embryo development. Compared with the control condition, inhibition of FSP1 reduced the cleavage rate at 24 h and 48 h and the blastocyst rate at 144 h. In addition, inhibiting FSP1 reduced the blastocyst diameter, total cell number, and proliferation capacity. Further analysis showed that inhibition of FSP1 significantly increased the levels of ferrous ions (Fe2+) and MDA but not GPX4. We also found that inhibition of FSP1 significantly decreased mitochondrial membrane potential and ATP levels, which in turn caused excessive accumulation of ROS and decreased the levels of GSH and the activity of the intracellular antioxidant enzymes SOD and CAT in embryos. In conclusion, FSP1, an important regulator, participates in regulating the development and quality of porcine early embryos. Inhibition of FSP1 impairs blastocyst formation, induces glutathione-independent ferroptosis, and further leads to oxidative stress due to mitochondrial dysfunction, ultimately affecting the developmental competence and impairing the quality of porcine early embryos.
Collapse
Affiliation(s)
- Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Ozadam H, Tonn T, Han CM, Segura A, Hoskins I, Rao S, Ghatpande V, Tran D, Catoe D, Salit M, Cenik C. Single-cell quantification of ribosome occupancy in early mouse development. Nature 2023:10.1038/s41586-023-06228-9. [PMID: 37344592 DOI: 10.1038/s41586-023-06228-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Translation regulation is critical for early mammalian embryonic development1. However, previous studies had been restricted to bulk measurements2, precluding precise determination of translation regulation including allele-specific analyses. Here, to address this challenge, we developed a novel microfluidic isotachophoresis (ITP) approach, named RIBOsome profiling via ITP (Ribo-ITP), and characterized translation in single oocytes and embryos during early mouse development. We identified differential translation efficiency as a key mechanism regulating genes involved in centrosome organization and N6-methyladenosine modification of RNAs. Our high-coverage measurements enabled, to our knowledge, the first analysis of allele-specific ribosome engagement in early development. These led to the discovery of stage-specific differential engagement of zygotic RNAs with ribosomes and reduced translation efficiency of transcripts exhibiting allele-biased expression. By integrating our measurements with proteomics data, we discovered that ribosome occupancy in germinal vesicle-stage oocytes is the predominant determinant of protein abundance in the zygote. The Ribo-ITP approach will enable numerous applications by providing high-coverage and high-resolution ribosome occupancy measurements from ultra-low input samples including single cells.
Collapse
Affiliation(s)
- Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Crystal M Han
- Department of Mechanical Engineering, San Jose State University, San Jose, CA, USA
| | - Alia Segura
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Vighnesh Ghatpande
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Duc Tran
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, USA
| | - David Catoe
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Ye Y, Homer HA. Two-step nuclear centring by competing microtubule- and actin-based mechanisms in 2-cell mouse embryos. EMBO Rep 2022; 23:e55251. [PMID: 36214648 PMCID: PMC9638869 DOI: 10.15252/embr.202255251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2024] Open
Abstract
Microtubules typically promote nuclear centring during early embryonic divisions in centrosome-containing vertebrates. In acentrosomal mouse zygotes, microtubules also centre male and female pronuclei prior to the first mitosis, this time in concert with actin. How nuclear centring is brought about in subsequent acentrosomal embryonic divisions has not been studied. Here, using time-lapse imaging in mouse embryos, we find that although nuclei are delivered to the cell centre upon completion of the first mitotic anaphase, the majority do not remain stationary and instead travel all the way to the cortex in a microtubule-dependent manner. High cytoplasmic viscosity in 2-cell embryos is associated with non-diffusive mechanisms involving actin for subsequent nuclear centring when microtubules again exert a negative influence. Thus, following the first mitotic division, pro-centring actin-dependent mechanisms work against microtubule-dependent de-centring forces. Disrupting the equilibrium of this tug-of-war compromises nuclear centring and symmetry of the subsequent division potentially risking embryonic development. This circuitous centring process exposes an embryonic vulnerability imposed by microtubule-dependent de-centring forces.
Collapse
Affiliation(s)
- Yunan Ye
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical ResearchThe University of QueenslandHerstonQLDAustralia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical ResearchThe University of QueenslandHerstonQLDAustralia
| |
Collapse
|
10
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
11
|
Méndez M, Guimerà M, Corral J, Cívico S. Sperm origin impact on early human embryo kinetics. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2022. [DOI: 10.1016/j.gine.2022.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Brooks KE, Daughtry BL, Davis B, Yan MY, Fei SS, Shepherd S, Carbone L, Chavez SL. Molecular contribution to embryonic aneuploidy and karyotypic complexity in initial cleavage divisions of mammalian development. Development 2022; 149:dev198341. [PMID: 35311995 PMCID: PMC9058497 DOI: 10.1242/dev.198341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/04/2022] [Indexed: 01/05/2023]
Abstract
Embryonic aneuploidy is highly complex, often leading to developmental arrest, implantation failure or spontaneous miscarriage in both natural and assisted reproduction. Despite our knowledge of mitotic mis-segregation in somatic cells, the molecular pathways regulating chromosome fidelity during the error-prone cleavage-stage of mammalian embryogenesis remain largely undefined. Using bovine embryos and live-cell fluorescent imaging, we observed frequent micro-/multi-nucleation of mis-segregated chromosomes in initial mitotic divisions that underwent unilateral inheritance, re-fused with the primary nucleus or formed a chromatin bridge with neighboring cells. A correlation between a lack of syngamy, multipolar divisions and asymmetric genome partitioning was also revealed, and single-cell DNA-seq showed propagation of primarily non-reciprocal mitotic errors. Depletion of the mitotic checkpoint protein BUB1B (also known as BUBR1) resulted in similarly abnormal nuclear structures and cell divisions, as well as chaotic aneuploidy and dysregulation of the kinase-substrate network that mediates mitotic progression, all before zygotic genome activation. This demonstrates that embryonic micronuclei sustain multiple fates, provides an explanation for blastomeres with uniparental origins, and substantiates defective checkpoints and likely other maternally derived factors as major contributors to the karyotypic complexity afflicting mammalian preimplantation development.
Collapse
Affiliation(s)
- Kelsey E. Brooks
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Brittany L. Daughtry
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brett Davis
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melissa Y. Yan
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Suzanne S. Fei
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Selma Shepherd
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biomedicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shawn L. Chavez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
13
|
Bakloushinskaya I. Chromosome Changes in Soma and Germ Line: Heritability and Evolutionary Outcome. Genes (Basel) 2022; 13:genes13040602. [PMID: 35456408 PMCID: PMC9029507 DOI: 10.3390/genes13040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The origin and inheritance of chromosome changes provide the essential foundation for natural selection and evolution. The evolutionary fate of chromosome changes depends on the place and time of their emergence and is controlled by checkpoints in mitosis and meiosis. Estimating whether the altered genome can be passed to subsequent generations should be central when we consider a particular genome rearrangement. Through comparative analysis of chromosome rearrangements in soma and germ line, the potential impact of macromutations such as chromothripsis or chromoplexy appears to be fascinating. What happens with chromosomes during the early development, and which alterations lead to mosaicism are other poorly studied but undoubtedly essential issues. The evolutionary impact can be gained most effectively through chromosome rearrangements arising in male meiosis I and in female meiosis II, which are the last divisions following fertilization. The diversity of genome organization has unique features in distinct animals; the chromosome changes, their internal relations, and some factors safeguarding genome maintenance in generations under natural selection were considered for mammals.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
14
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Cooperative epithelial phagocytosis enables error correction in the early embryo. Nature 2021; 590:618-623. [PMID: 33568811 DOI: 10.1038/s41586-021-03200-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/24/2020] [Indexed: 01/31/2023]
Abstract
Errors in early embryogenesis are a cause of sporadic cell death and developmental failure1,2. Phagocytic activity has a central role in scavenging apoptotic cells in differentiated tissues3-6. However, how apoptotic cells are cleared in the blastula embryo in the absence of specialized immune cells remains unknown. Here we show that the surface epithelium of zebrafish and mouse embryos, which is the first tissue formed during vertebrate development, performs efficient phagocytic clearance of apoptotic cells through phosphatidylserine-mediated target recognition. Quantitative four-dimensional in vivo imaging analyses reveal a collective epithelial clearance mechanism that is based on mechanical cooperation by two types of Rac1-dependent basal epithelial protrusions. The first type of protrusion, phagocytic cups, mediates apoptotic target uptake. The second, a previously undescribed type of fast and extended actin-based protrusion that we call 'epithelial arms', promotes the rapid dispersal of apoptotic targets through Arp2/3-dependent mechanical pushing. On the basis of experimental data and modelling, we show that mechanical load-sharing enables the long-range cooperative uptake of apoptotic cells by multiple epithelial cells. This optimizes the efficiency of tissue clearance by extending the limited spatial exploration range and local uptake capacity of non-motile epithelial cells. Our findings show that epithelial tissue clearance facilitates error correction that is relevant to the developmental robustness and survival of the embryo, revealing the presence of an innate immune function in the earliest stages of embryonic development.
Collapse
|
16
|
Duro J, Nilsson J. SAC during early cell divisions: Sacrificing fidelity over timely division, regulated differently across organisms: Chromosome alignment and segregation are left unsupervised from the onset of development until checkpoint activity is acquired, varying from species to species. Bioessays 2020; 43:e2000174. [PMID: 33251610 DOI: 10.1002/bies.202000174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Early embryogenesis is marked by a frail Spindle Assembly Checkpoint (SAC). The time of SAC acquisition varies depending on the species, cell size or a yet to be uncovered developmental timer. This means that for a specific number of divisions, biorientation of sister chromatids occurs unsupervised. When error-prone segregation is an issue, an aneuploidy-selective apoptosis system can come into play to eliminate chromosomally unbalanced cells resulting in healthy newborns. However, aneuploidy content can be too great to overcome, endangering viability. SAC generates a diffusible signal to lengthen time spent in mitosis if needed, ensuring correct chromosome segregation, a fundamental factor in the generation of euploid cells. Thus, it remains puzzling what benefit could come from delaying SAC acquisition till later in the development. In this review, we describe what is known on SAC acquisition in distinct species and highlight pending research as well as potential applications for such knowledge.
Collapse
Affiliation(s)
- Joana Duro
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
17
|
Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proc Natl Acad Sci U S A 2020; 117:18302-18309. [PMID: 32690677 PMCID: PMC7414137 DOI: 10.1073/pnas.2001754117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability to evaluate sperm at the microscopic level, at high-throughput, would be useful for assisted reproductive technologies (ARTs), as it can allow specific selection of sperm cells for in vitro fertilization (IVF). The tradeoff between intrinsic imaging and external contrast agents is particularly acute in reproductive medicine. The use of fluorescence labels has enabled new cell-sorting strategies and given new insights into developmental biology. Nevertheless, using extrinsic contrast agents is often too invasive for routine clinical operation. Raising questions about cell viability, especially for single-cell selection, clinicians prefer intrinsic contrast in the form of phase-contrast, differential-interference contrast, or Hoffman modulation contrast. While such instruments are nondestructive, the resulting image suffers from a lack of specificity. In this work, we provide a template to circumvent the tradeoff between cell viability and specificity by combining high-sensitivity phase imaging with deep learning. In order to introduce specificity to label-free images, we trained a deep-convolutional neural network to perform semantic segmentation on quantitative phase maps. This approach, a form of phase imaging with computational specificity (PICS), allowed us to efficiently analyze thousands of sperm cells and identify correlations between dry-mass content and artificial-reproduction outcomes. Specifically, we found that the dry-mass content ratios between the head, midpiece, and tail of the cells can predict the percentages of success for zygote cleavage and embryo blastocyst formation.
Collapse
|
18
|
Middelkamp S, van Tol HTA, Spierings DCJ, Boymans S, Guryev V, Roelen BAJ, Lansdorp PM, Cuppen E, Kuijk EW. Sperm DNA damage causes genomic instability in early embryonic development. SCIENCE ADVANCES 2020; 6:eaaz7602. [PMID: 32494621 PMCID: PMC7159919 DOI: 10.1126/sciadv.aaz7602] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/22/2020] [Indexed: 05/03/2023]
Abstract
Genomic instability is common in human embryos, but the underlying causes are largely unknown. Here, we examined the consequences of sperm DNA damage on the embryonic genome by single-cell whole-genome sequencing of individual blastomeres from bovine embryos produced with sperm damaged by γ-radiation. Sperm DNA damage primarily leads to fragmentation of the paternal chromosomes followed by random distribution of the chromosomal fragments over the two sister cells in the first cell division. An unexpected secondary effect of sperm DNA damage is the induction of direct unequal cleavages, which include the poorly understood heterogoneic cell divisions. As a result, chaotic mosaicism is common in embryos derived from fertilizations with damaged sperm. The mosaic aneuploidies, uniparental disomies, and de novo structural variation induced by sperm DNA damage may compromise fertility and lead to rare congenital disorders when embryos escape developmental arrest.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, Utrecht 3584 CG, Netherlands
| | - Helena T. A. van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, Netherlands
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, Utrecht 3584 CG, Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Bernard A. J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, Netherlands
| | - Peter M. Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, Utrecht 3584 CG, Netherlands
- Hartwig Medical Foundation, Amsterdam, Netherlands
- Corresponding author.
| | - Ewart W. Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, Utrecht 3584 CG, Netherlands
| |
Collapse
|
19
|
Bouftas N, Wassmann K. Cycling through mammalian meiosis: B-type cyclins in oocytes. Cell Cycle 2019; 18:1537-1548. [PMID: 31208271 PMCID: PMC6619999 DOI: 10.1080/15384101.2019.1632139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
B-type cyclins in association with Cdk1 mediate key steps of mitosis and meiosis, by phosphorylating a plethora of substrates. Progression through the meiotic cell cycle requires the execution of two cell divisions named meiosis I and II without intervening S-phase, to obtain haploid gametes. These two divisions are highly asymmetric in the large oocyte. Chromosome segregation in meiosis I and sister chromatid segregation in meiosis II requires the sharp, switch-like inactivation of Cdk1 activity, which is brought about by degradation of B-type cyclins and counteracting phosphatases. Importantly and contrary to mitosis, inactivation of Cdk1 must not allow S-phase to take place at exit from meiosis I. Here, we describe recent studies on the regulation of translation and degradation of B-type cyclins in mouse oocytes, and how far their roles are redundant or specific, with a special focus on the recently discovered oocyte-specific role of cyclin B3.
Collapse
Affiliation(s)
- Nora Bouftas
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| | - Katja Wassmann
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| |
Collapse
|