1
|
Gao J, Yu L, Qi H, Qi J, Zheng Z. The Application of scRNA-Seq in Heart Development and Regeneration. Genesis 2025; 63:e70013. [PMID: 40300044 DOI: 10.1002/dvg.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 05/01/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a rapidly developing and useful technique for elucidating biological mechanisms and characterizing individual cells. Tens of millions of patients worldwide suffer from heart injuries and other types of heart disease. Neonatal mammalian hearts and certain adult vertebrate species, such as zebrafish, can fully regenerate after myocardial injury. However, the adult mammalian heart is unable to regenerate the damaged myocardium. scRNA-seq provides many new insights into pathological and normal hearts and facilitates our understanding of cellular responses to cardiac injury and repair at different stages, which may provide critical clues for effective therapies for adult heart regeneration. In this review, we summarize the application of scRNA-seq in heart development and regeneration and describe how important molecular mechanisms can be harnessed to promote heart regeneration.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lindong Yu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Haoran Qi
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Qi
- Laboratory Department, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, China
| | - Zhaodi Zheng
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Peixoto MM, Soares‐da‐Silva F, Schmutz S, Mailhe M, Novault S, Cumano A, Ait‐Mansour C. Identification of fetal liver stroma in spectral cytometry using the parameter autofluorescence. Cytometry A 2022; 101:960-969. [PMID: 35491762 PMCID: PMC9790487 DOI: 10.1002/cyto.a.24567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023]
Abstract
The fetal liver (FL) is the main hematopoietic organ during embryonic development. The FL is also the unique anatomical site where hematopoietic stem cells expand before colonizing the bone marrow, where they ensure life-long blood cell production and become mostly resting. The identification of the different cell types that comprise the hematopoietic stroma in the FL is essential to understand the signals required for the expansion and differentiation of the hematopoietic stem cells. We used a panel of monoclonal antibodies to identify FL stromal cells in a 5-laser equipped spectral flow cytometry (FCM) analyzer. The "Autofluorescence Finder" of SONY ID7000 software identified two distinct autofluorescence emission spectra. Using autofluorescence as a fluorescence parameter we could assign the two autofluorescent signals to three distinct cell types and identified surface markers that characterize these populations. We found that one autofluorescent population corresponds to hepatoblast-like cells and cholangiocytes whereas the other expresses mesenchymal transcripts and was identified as stellate cells. Importantly, after birth, autofluorescence becomes the unique identifying property of hepatoblast-like cells because mature cholangiocytes are no longer autofluorescent. These results show that autofluorescence used as a parameter in spectral FCM is a useful tool to identify new cell subsets that are difficult to analyze in conventional FCM.
Collapse
Affiliation(s)
- Márcia Mesquita Peixoto
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance,Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal,Instituto Nacional de Engenharia BiomédicaUniversidade do PortoPortoPortugal,Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Francisca Soares‐da‐Silva
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance
| | | | - Marie‐Pierre Mailhe
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance
| | - Sophie Novault
- Flow cytometry core facility, CRT2, Institut PasteurParisFrance
| | - Ana Cumano
- Immunology DepartmentUnit Lymphocytes and Immunity, Institut PasteurParisFrance,INSERM U1223ParisFrance,Université de Paris, Sorbonne Paris CitéParisFrance
| | | |
Collapse
|
3
|
Astrocytic CD24 Protects Neuron from Recombinant High-Mobility Group Box 1 Protein(rHMGB1)-Elicited Neuronal Injury. Brain Sci 2022; 12:brainsci12091119. [PMID: 36138855 PMCID: PMC9497078 DOI: 10.3390/brainsci12091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Endogenous host-derived molecules named damage-associated molecular patterns (DAMPs) can induce excessive non-sterile inflammatory responses on recognition of specific membrane-tethered receptors. Here in this study, we aimed to explore the role of DAMP molecule HMGB1 in astrocyte-mediated sterile neuroinflammation and the resultant influences on neurons. In vitro cultured astrocytes were challenged with rHMGB1 and then harvested at 6 h, 12 h, 24 h, 36 h, and 48 h, respectively. The astrocytic CD24 expression was determined by quantitative real-time polymerase chain reaction (qPCR), Western blot analysis and immunofluorescence, nuclear factor kappa B (NF-κB) binding activity was detected by electrophoretic mobility shift assay (EMSA), and the proinflammatory factors, tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β), were measured by qPCR. The neuronal morphology was assessed with phase-contrast microscopy. The results showed that astrocytic mRNA and protein CD24 expression began to rise at 24 h, peaked at 36 h, and remained elevated at 48 h after rHMGB1 stimulation, accompanied with enhanced NF-κB binding activity and augmented expression of TNF-α and IL-1β. Furthermore, rHMGB1 caused cocultured neuron damage and was aggregated upon CD24 knockdown. Taken together, these novel findings suggested that rHMGB1 could promote astrocytic CD24 expression, the inhibition of which could aggregate neuronal damage.
Collapse
|
4
|
Pustovit KB, Samoilova DV, Abramochkin DV, Filatova TS, Kuzmin VS. α1-adrenergic receptors accompanied by GATA4 expression are related to proarrhythmic conduction and automaticity in rat interatrial septum. J Physiol Biochem 2022; 78:793-805. [PMID: 35802254 DOI: 10.1007/s13105-022-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
The development of interatrial septum (IAS) is a complicated process, which continues during postnatal life. The hypertrophic signals in developing heart are mediated among others by α-adrenergic pathways. These facts suggest the presence of specific electrophysiological features in developing IAS. This study was aimed to investigate the electrical activity in the tissue preparations of IAS from rat heart in normal conditions and under stimulation of adrenoreceptors. Intracellular recording of electrical activity revealed less negative level of resting membrane potential in IAS if compared to myocardium of left atrium. In normal conditions, non-paced IAS preparations were quiescent, but noradrenaline (10-5 M) and phenylephrine (10-5 M) induced spontaneous action potentials, which could be abolished by α1-blocker prazosin (10-5 M), but not β1-blocker atenolol (10-5 M). Optical mapping showed drastic phenylephrine-induced slowing of conduction in adult rat IAS. The α1-dependent ectopic automaticity of IAS myocardium might be explained by immunohistochemical data indicating the presence of transcription factor GATA4 and abundant α1A-adrenoreceptors in myocytes from adult rat IAS. An elevated sensitivity to adrenergic stimulation due to involvement of α1-adrenergic pathways may underlie increased proarrhythmic potential of adult IAS at least in rats.
Collapse
Affiliation(s)
- Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Daria V Samoilova
- N. N. Blokhin National Medical Research Centre of Oncology, Kashirskoye sh., 24, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya, 15a, Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| |
Collapse
|
5
|
Hypoxia promotes a perinatal-like progenitor state in the adult murine epicardium. Sci Rep 2022; 12:9250. [PMID: 35661120 PMCID: PMC9166725 DOI: 10.1038/s41598-022-13107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex single cell transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal cells, as well as cells with an endothelial-like fate. We found that physiological hypoxia promoted a perinatal-like progenitor state in the adult murine epicardium. In vitro clonal analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can be stimulated in vivo and provide an in vitro model for further studies.
Collapse
|
6
|
Marques IJ, Ernst A, Arora P, Vianin A, Hetke T, Sanz-Morejón A, Naumann U, Odriozola A, Langa X, Andrés-Delgado L, Zuber B, Torroja C, Osterwalder M, Simões FC, Englert C, Mercader N. Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development 2022; 149:274789. [DOI: 10.1242/dev.200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contribute cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.
Collapse
Affiliation(s)
- Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Andrej Vianin
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Tanja Hetke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Andrés Sanz-Morejón
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Adolfo Odriozola
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | | | - Benoît Zuber
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, 3010 Bern, Switzerland
| | - Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07745, Germany
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| |
Collapse
|
7
|
Sagiv E, Portman MA. CD24 for Cardiovascular Researchers: A Key Molecule in Cardiac Immunology, Marker of Stem Cells and Target for Drug Development. J Pers Med 2021; 11:jpm11040260. [PMID: 33915986 PMCID: PMC8066264 DOI: 10.3390/jpm11040260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the membrane protein, CD24, and its emerging role in major disease processes, has made a huge leap forward in the past two decades. It appears to have various key roles in oncogenesis, tumor progression and metastasis, stem cell maintenance and immune modulation. First described in the 1980s as the homologous human protein to the mouse HSA (Heat Stable Antigen), it was reported as a surface marker in developing hematopoietic cell lines. The later discovery of its overexpression in a large number of human neoplasms, lead cancer researchers to discover its various active roles in critical checkpoints during cancer development and progression. Targeting CD24 in directed drug development showed promising results in cancer treatment. More recently, the chimeric CD24-Fc protein has shown exciting results in clinical trials as a specific modulator of auto-inflammatory syndromes. This report is aimed to summarize the relevant literature on CD24 and tie it together with recent advancements in cardiovascular research. We hypothesize that CD24 is a promising focus of research in the understanding of cardiovascular disease processes and the development of novel biological therapies.
Collapse
Affiliation(s)
- Eyal Sagiv
- Correspondence: ; Tel.: +1-206-987-6916; Fax: +1-206-987-3839
| | | |
Collapse
|
8
|
Darrigrand JF, Valente M, Comai G, Martinez P, Petit M, Nishinakamura R, Osorio DS, Renault G, Marchiol C, Ribes V, Cadot B. Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. eLife 2020; 9:e50325. [PMID: 32105214 PMCID: PMC7069721 DOI: 10.7554/elife.50325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.
Collapse
Affiliation(s)
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure team, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737ParisFrance
| | - Glenda Comai
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut PasteurParisFrance
| | - Pauline Martinez
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| | - Maxime Petit
- Unité Lymphopoïèse – INSERM U1223, Institut PasteurParisFrance
| | | | - Daniel S Osorio
- Cytoskeletal Dynamics Lab, Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
| | - Gilles Renault
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Carmen Marchiol
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Vanessa Ribes
- Universite de Paris, Institut Jacques MonodCNRSParisFrance
| | - Bruno Cadot
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| |
Collapse
|
9
|
Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. CONCEPTS AND APPLICATIONS OF STEM CELL BIOLOGY 2020. [DOI: 10.1007/978-3-030-43939-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|