1
|
Reszetnik G, Hammond K, Mahshid S, AbdElFatah T, Nguyen D, Corsini R, Caya C, Papenburg J, Cheng MP, Yansouni CP. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat Commun 2024; 15:9719. [PMID: 39521792 PMCID: PMC11550857 DOI: 10.1038/s41467-024-53930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Slow progress towards implementation of conventional clinical bacteriology in low resource settings and strong interest in greater speed for antimicrobial susceptibility testing (AST) more generally has focused attention on next-generation rapid AST technologies. In this Review, we systematically synthesize publications and submissions to regulatory agencies describing technologies that provide phenotypic AST faster than conventional methods. We characterize over ninety technologies in terms of underlying technical innovations, technology readiness level, extent of clinical validation, and time-to-results. This work provides a guide for technology developers and clinical microbiologists to understand the rapid phenotypic AST technology landscape, current development pipeline, and AST-specific validation milestones.
Collapse
Affiliation(s)
- Grace Reszetnik
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keely Hammond
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Mahshid
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Tamer AbdElFatah
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- McGill Antimicrobial Resistance Centre, McGill University, Montreal, Quebec, Canada
- Division of Respirology, McGill University Health Centre, Montreal, Quebec, Canada
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rachel Corsini
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Chelsea Caya
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Divisions of Pediatric Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew P Cheng
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada.
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- J.D. MacLean Centre for Tropical and Geographic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Wang Y, Cai D, Ouyang X, He H, Liu Y, Zou J, Chen Z, Wu B, Wu H, Liu D. Cascade filtration and droplet digital detection integrated microfluidic assay enables isolating culture-free phenotypic identification of carbapenem-resistant organisms. Biosens Bioelectron 2023; 220:114863. [DOI: 10.1016/j.bios.2022.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
3
|
Feng L, Wu H, Yue H, Chu Y, Zhang J, Huang X, Pang S, Zhang L, Li Y, Wang W, Zou B, Zhou G. Multiplexed and Rapid AST for Escherichia coli Infection by Simultaneously Pyrosequencing Multiple Barcodes Each Specific to an Antibiotic Exposed to a Sample. Anal Chem 2022; 94:8633-8641. [PMID: 35675678 DOI: 10.1021/acs.analchem.2c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antimicrobial susceptibility testing (AST) is an effective way to guide antibiotic selection. However, conventional culture-based phenotypic AST is time-consuming. The key point to shorten the test is to quantify the small change in the bacterial number after the antibiotic exposure. To achieve rapid AST, we proposed a combination of multiplexed PCR with barcoded pyrosequencing to significantly shorten the time for antibiotic exposure. First, bacteria exposed to each antibiotic were labeled with a unique barcode. Then, the pool of the barcoded products was amplified by PCR with a universal primer pair. Finally, barcodes in the amplicons were individually and quantitatively decoded by pyrosequencing. As pyrosequencing is able to discriminate as low as 5% variation in target concentrations, as short as 7.5 min was enough for cultivation to detect the susceptibility of Escherichia coli to an antibiotic. The barcodes enable more than six kinds of drugs or six kinds of concentrations of a drug to be tested at a time. The susceptibility of 6 antibiotics to 43 E. coli-positive samples from 482 clinical urine samples showed a consistency of 99.3% for drug-resistant samples and of 95.7% for drug-sensitive samples in comparison with the conventional method. In addition, the minimum inhibitory concentration (MIC) of 29 E. coli samples was successfully measured. The proposed AST is dye free (pyrosequencing), multiplexed (six antibiotics), fast (a half-working day for reporting the results), and able to detect the MIC, thus having a great potential for clinical use in quick antibiotic selection.
Collapse
Affiliation(s)
- Liying Feng
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Huijie Yue
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Jieyu Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Likun Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Okeke IN, Feasey N, Parkhill J, Turner P, Limmathurotsakul D, Georgiou P, Holmes A, Peacock SJ. Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Glob Health 2021; 5:bmjgh-2020-003622. [PMID: 33268385 PMCID: PMC7712442 DOI: 10.1136/bmjgh-2020-003622] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022] Open
Abstract
The scope and trajectory of today’s escalating antimicrobial resistance (AMR) crisis is inadequately captured by existing surveillance systems, particularly those of lower income settings. AMR surveillance systems typically collate data from routine culture and susceptibility testing performed in diagnostic bacteriology laboratories to support healthcare. Limited access to high quality culture and susceptibility testing results in the dearth of AMR surveillance data, typical of many parts of the world where the infectious disease burden and antimicrobial need are high. Culture and susceptibility testing by traditional techniques is also slow, which limits its value in infection management. Here, we outline hurdles to effective resistance surveillance in many low-income settings and encourage an open attitude towards new and evolving technologies that, if adopted, could close resistance surveillance gaps. Emerging advancements in point-of-care testing, laboratory detection of resistance through or without culture, and in data handling, have the potential to generate resistance data from previously unrepresented locales while simultaneously supporting healthcare. Among them are microfluidic, nucleic acid amplification technology and next-generation sequencing approaches. Other low tech or as yet unidentified innovations could also rapidly accelerate AMR surveillance. Parallel advances in data handling further promise to significantly improve AMR surveillance, and new frameworks that can capture, collate and use alternate data formats may need to be developed. We outline the promise and limitations of such technologies, their potential to leapfrog surveillance over currently available, conventional technologies in use today and early steps that health systems could take towards preparing to adopt them.
Collapse
Affiliation(s)
- Iruka N Okeke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nicholas Feasey
- The Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | | | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Alison Holmes
- National Centre for Infection Prevention and Management, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
5
|
Vasala A, Hytönen VP, Laitinen OH. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Front Cell Infect Microbiol 2020; 10:308. [PMID: 32760676 PMCID: PMC7373752 DOI: 10.3389/fcimb.2020.00308] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fast, robust, and affordable antimicrobial susceptibility testing (AST) is required, as roughly 50% of antibiotic treatments are started with wrong antibiotics and without a proper diagnosis of the pathogen. Validated growth-based AST according to EUCAST or CLSI (European Committee on Antimicrobial Susceptibility Testing, Clinical Laboratory Standards Institute) recommendations is currently suggested to guide the antimicrobial therapy. Any new AST should be validated against these standard methods. Many rapid diagnostic techniques can already provide pathogen identification. Some of them can additionally detect the presence of resistance genes or resistance proteins, but usually isolated pure cultures are needed for AST. We discuss the value of the technologies applying nucleic acid amplification, whole genome sequencing, and hybridization as well as immunodiagnostic and mass spectrometry-based methods and biosensor-based AST. Additionally, we evaluate the potential of integrated systems applying microfluidics to integrate cultivation, lysis, purification, and signal reading steps. We discuss technologies and commercial products with potential for Point-of-Care Testing (POCT) and their capability to analyze polymicrobial samples without pre-purification steps. The purpose of this critical review is to present the needs and drivers for AST development, to show the benefits and limitations of AST methods, to introduce promising new POCT-compatible technologies, and to discuss AST technologies that are likely to thrive in the future.
Collapse
Affiliation(s)
- Antti Vasala
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P. Hytönen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Olli H. Laitinen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Savela ES, Schoepp NG, Cooper MM, Rolando JC, Klausner JD, Soge OO, Ismagilov RF. Surfactant-enhanced DNA accessibility to nuclease accelerates phenotypic β-lactam antibiotic susceptibility testing of Neisseria gonorrhoeae. PLoS Biol 2020; 18:e3000651. [PMID: 32191696 PMCID: PMC7081974 DOI: 10.1371/journal.pbio.3000651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Rapid antibiotic susceptibility testing (AST) for Neisseria gonorrhoeae (Ng) is critically needed to counter widespread antibiotic resistance. Detection of nucleic acids in genotypic AST can be rapid, but it has not been successful for β-lactams (the largest antibiotic class used to treat Ng). Rapid phenotypic AST for Ng is challenged by the pathogen's slow doubling time and the lack of methods to quickly quantify the pathogen's response to β-lactams. Here, we asked two questions: (1) Is it possible to use nucleic acid quantification to measure the β-lactam susceptibility phenotype of Ng very rapidly, using antibiotic-exposure times much shorter than the 1- to 2-h doubling time of Ng? (2) Would such short-term antibiotic exposures predict the antibiotic resistance profile of Ng measured by plate growth assays over multiple days? To answer these questions, we devised an innovative approach for performing a rapid phenotypic AST that measures DNA accessibility to exogenous nucleases after exposure to β-lactams (termed nuclease-accessibility AST [nuc-aAST]). We showed that DNA in antibiotic-susceptible cells has increased accessibility upon exposure to β-lactams and that a judiciously chosen surfactant permeabilized the outer membrane and enhanced this effect. We tested penicillin, cefixime, and ceftriaxone and found good agreement between the results of the nuc-aAST after 15-30 min of antibiotic exposure and the results of the gold-standard culture-based AST measured over days. These results provide a new pathway toward developing a critically needed phenotypic AST for Ng and additional global-health threats.
Collapse
Affiliation(s)
- Emily S. Savela
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Nathan G. Schoepp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Matthew M. Cooper
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Justin C. Rolando
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Jeffrey D. Klausner
- David Geffen School of Medicine, Division of Infectious Disease, University of California Los Angeles, Los Angeles, California, United States of America
| | - Olusegun O. Soge
- Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Rustem F. Ismagilov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|